{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"outputs": [],
"source": [
"import numpy as np\n",
"import pandas as pd\n",
"import os\n",
"import shutil\n",
"from flashgeotext.geotext import GeoText\n",
"import re"
],
"metadata": {
"collapsed": false
}
},
{
"cell_type": "code",
"execution_count": 2,
"outputs": [],
"source": [
"import hashlib\n",
"\n",
"def md5hash(s: str):\n",
" return hashlib.md5(s.encode('utf-8')).hexdigest()"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"record_col=\"UT (Unique WOS ID)\"\n",
"outfile = r\"C:\\Users\\radvanyi\\PycharmProjects\\ZSI_analytics\\WOS\\wos_extract\\wos_records_concat.csv\""
]
},
{
"cell_type": "code",
"execution_count": 3,
"outputs": [],
"source": [],
"metadata": {
"collapsed": false
}
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Number of initial records: 41511\n",
"Number of filtered records: 35663\n"
]
}
],
"source": [
"wos = pd.read_csv(outfile, sep=\"\\t\",low_memory=False)\n",
"print(f'Number of initial records: {len(wos)}')\n",
"metrix = pd.read_excel(\"sm_journal_classification.xlsx\", sheet_name=\"Journal_Classification\")\n",
"\n",
"\n",
"metrix = metrix.set_index([c for c in metrix.columns if \"issn\" not in c]).stack().reset_index()\n",
"metrix = metrix.rename(columns={'level_6':\"issn_type\", 0:\"issn\"})\n",
"metrix[\"issn\"]=metrix[\"issn\"].str.replace(\"-\",\"\").str.lower().str.strip()\n",
"\n",
"wos[\"issn\"] = wos[\"ISSN\"].str.replace(\"-\",\"\").str.lower().str.strip()\n",
"wos[\"eissn\"] = wos[\"eISSN\"].str.replace(\"-\",\"\").str.lower().str.strip()\n",
"wos = wos.set_index([c for c in wos.columns if \"issn\" not in c]).stack().reset_index()\n",
"wos = wos.rename(columns={'level_71':\"issn_var\", 0:\"issn\"})\n",
"\n",
"wos_merge = wos.merge(metrix, on=\"issn\", how=\"left\")\n",
"wos = wos_merge.sort_values(by=\"issn_var\",ascending=False).drop_duplicates(subset=record_col)\n",
"\n",
"# drop entries not indexed by metrix\n",
"wos = wos[~wos[\"Domain_English\"].isna()]\n",
"# drop duplicates (based on doi)\n",
"wos = wos[~((~wos[\"DOI\"].isna())&(wos[\"DOI\"].duplicated(False)))]\n",
"wos = wos.drop_duplicates(subset=[\"Publication Type\",\"Document Type\",\"Authors\",\"Article Title\",\"Source Title\",\"Publication Year\"])\n",
"wos = wos[((wos[\"Publication Year\"]<2023) & (~wos['Domain_English'].isna()))]\n",
"print(f'Number of filtered records: {len(wos)}')"
]
},
{
"cell_type": "code",
"execution_count": 5,
"outputs": [
{
"data": {
"text/plain": " Article Title \n60737 Beauty3DFaceNet: Deep geometry and texture fus... \\\n61738 Document Neural Autoregressive Distribution Es... \n47201 Discriminative feature representation for Nois... \n65760 Large-scale hydrological modeling in a multi-o... \n19959 Location Prediction in Social Networks \n... ... \n41680 Altered global brain signal in schizophrenia \n27626 Prediction of Surface Topography at the End of... \n44966 Cascading Failure Analysis of Cyber Physical P... \n38077 Data analysis and mining of traffic features b... \n67492 TBN: Convolutional Neural Network with Ternary... \n\n Keywords Plus \n60737 FACE; COMPUTATION; BEAUTY; SHAPE \\\n61738 NaN \n47201 NATURAL SCENE STATISTICS; SPARSE REPRESENTATIO... \n65760 GROUNDWATER DEPLETION; EVAPOTRANSPIRATION; WATER \n19959 NaN \n... ... \n41680 RESTING-STATE FMRI; FUNCTIONAL CONNECTIVITY MR... \n27626 NaN \n44966 SELF-ORGANIZED CRITICALITY; COMMUNICATION; STA... \n38077 NaN \n67492 NaN \n\n Author Keywords \n60737 3D facial attractiveness prediction; Deep lear... \n61738 Neural networks; Deep learning; Topic models; ... \n47201 Discriminative feature representation (DFR); N... \n65760 Large scale modeling; Multi-objective calibrat... \n19959 NaN \n... ... \n41680 resting-state; global signal; psychiatric illness \n27626 Wear Modeling; Sliding Wear; Surface Topography \n44966 Cascading failure; control threshold; cyber ph... \n38077 data mining; GPS trajectory; Internet of Thing... \n67492 CNN; TBN; Acceleration; Compression; Binary op... \n\n[100 rows x 3 columns]",
"text/html": "
\n\n
\n \n \n | \n Article Title | \n Keywords Plus | \n Author Keywords | \n
\n \n \n \n 60737 | \n Beauty3DFaceNet: Deep geometry and texture fus... | \n FACE; COMPUTATION; BEAUTY; SHAPE | \n 3D facial attractiveness prediction; Deep lear... | \n
\n \n 61738 | \n Document Neural Autoregressive Distribution Es... | \n NaN | \n Neural networks; Deep learning; Topic models; ... | \n
\n \n 47201 | \n Discriminative feature representation for Nois... | \n NATURAL SCENE STATISTICS; SPARSE REPRESENTATIO... | \n Discriminative feature representation (DFR); N... | \n
\n \n 65760 | \n Large-scale hydrological modeling in a multi-o... | \n GROUNDWATER DEPLETION; EVAPOTRANSPIRATION; WATER | \n Large scale modeling; Multi-objective calibrat... | \n
\n \n 19959 | \n Location Prediction in Social Networks | \n NaN | \n NaN | \n
\n \n ... | \n ... | \n ... | \n ... | \n
\n \n 41680 | \n Altered global brain signal in schizophrenia | \n RESTING-STATE FMRI; FUNCTIONAL CONNECTIVITY MR... | \n resting-state; global signal; psychiatric illness | \n
\n \n 27626 | \n Prediction of Surface Topography at the End of... | \n NaN | \n Wear Modeling; Sliding Wear; Surface Topography | \n
\n \n 44966 | \n Cascading Failure Analysis of Cyber Physical P... | \n SELF-ORGANIZED CRITICALITY; COMMUNICATION; STA... | \n Cascading failure; control threshold; cyber ph... | \n
\n \n 38077 | \n Data analysis and mining of traffic features b... | \n NaN | \n data mining; GPS trajectory; Internet of Thing... | \n
\n \n 67492 | \n TBN: Convolutional Neural Network with Ternary... | \n NaN | \n CNN; TBN; Acceleration; Compression; Binary op... | \n
\n \n
\n
100 rows × 3 columns
\n
"
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"wos[[\"Article Title\",\"Keywords Plus\",\"Author Keywords\"]].sample(100)"
],
"metadata": {
"collapsed": false
}
},
{
"cell_type": "code",
"execution_count": 6,
"outputs": [
{
"data": {
"text/plain": " UT (Unique WOS ID) keyword_all\n0 WOS:000208863600013 COMPARATIVE GENOMICS\n1 WOS:000208863600013 ANAMMOX\n2 WOS:000208863600013 KUENENIA STUTTGARTIENSIS\n3 WOS:000208863600013 METAGENOMICS\n4 WOS:000208863600013 ENRICHMENT CULTURE\n.. ... ...\n97 WOS:000209724300006 VIRTUAL DISKS\n98 WOS:000209724300006 HETEROGENEOUS SERVICES\n99 WOS:000209810700046 CORROSION CHARACTERIZATION\n100 WOS:000209810700046 FEATURE EXTRACTION\n101 WOS:000209810700046 PULSED EDDY CURRENT\n\n[100 rows x 2 columns]",
"text/html": "\n\n
\n \n \n | \n UT (Unique WOS ID) | \n keyword_all | \n
\n \n \n \n 0 | \n WOS:000208863600013 | \n COMPARATIVE GENOMICS | \n
\n \n 1 | \n WOS:000208863600013 | \n ANAMMOX | \n
\n \n 2 | \n WOS:000208863600013 | \n KUENENIA STUTTGARTIENSIS | \n
\n \n 3 | \n WOS:000208863600013 | \n METAGENOMICS | \n
\n \n 4 | \n WOS:000208863600013 | \n ENRICHMENT CULTURE | \n
\n \n ... | \n ... | \n ... | \n
\n \n 97 | \n WOS:000209724300006 | \n VIRTUAL DISKS | \n
\n \n 98 | \n WOS:000209724300006 | \n HETEROGENEOUS SERVICES | \n
\n \n 99 | \n WOS:000209810700046 | \n CORROSION CHARACTERIZATION | \n
\n \n 100 | \n WOS:000209810700046 | \n FEATURE EXTRACTION | \n
\n \n 101 | \n WOS:000209810700046 | \n PULSED EDDY CURRENT | \n
\n \n
\n
100 rows × 2 columns
\n
"
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"kw_df = pd.DataFrame()\n",
"for c in [\"Keywords Plus\",\"Author Keywords\"]:\n",
" kwp = wos.groupby(record_col)[c].apply(lambda x: x.str.split(';')).explode().str.strip().str.upper()\n",
" kwp.name = 'keyword_all'\n",
" kw_df = pd.concat([kwp.reset_index(),kw_df],ignore_index=True)\n",
"kw_df = kw_df[~kw_df[\"keyword_all\"].isna()].copy().drop(columns=\"level_1\").drop_duplicates()\n",
"kw_df[\"keyword_all\"] = kw_df[\"keyword_all\"].apply(lambda x: re.sub(\"[\\(\\[].*?[\\)\\]]\", \"\", x))\n",
"kw_df.head(100)"
],
"metadata": {
"collapsed": false
}
},
{
"cell_type": "code",
"execution_count": 7,
"outputs": [
{
"data": {
"text/plain": " UT (Unique WOS ID) keyword_all\n0 WOS:000208863600013 COMPARATIVE GENOMICS; ANAMMOX; KUENENIA STUTTG...\n1 WOS:000208863600266 ANME; PYROSEQUENCING; AOM; COMMUNITY STRUCTURE...\n2 WOS:000208863900217 DEFAULT MODE NETWORK; EFFECTIVE CONNECTIVITY; ...\n3 WOS:000208972600008 BRAIN-MACHINE INTERFACE ; FIELD-PROGRAMMABLE G...\n4 WOS:000209043200014 CYANOBACTERIA BLOOM; DRINKING WATER TREATMENT;...",
"text/html": "\n\n
\n \n \n | \n UT (Unique WOS ID) | \n keyword_all | \n
\n \n \n \n 0 | \n WOS:000208863600013 | \n COMPARATIVE GENOMICS; ANAMMOX; KUENENIA STUTTG... | \n
\n \n 1 | \n WOS:000208863600266 | \n ANME; PYROSEQUENCING; AOM; COMMUNITY STRUCTURE... | \n
\n \n 2 | \n WOS:000208863900217 | \n DEFAULT MODE NETWORK; EFFECTIVE CONNECTIVITY; ... | \n
\n \n 3 | \n WOS:000208972600008 | \n BRAIN-MACHINE INTERFACE ; FIELD-PROGRAMMABLE G... | \n
\n \n 4 | \n WOS:000209043200014 | \n CYANOBACTERIA BLOOM; DRINKING WATER TREATMENT;... | \n
\n \n
\n
"
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"wos_kwd_concat = kw_df.groupby(record_col, as_index=False).agg({'keyword_all': '; '.join})\n",
"wos_kwd_concat.head()"
],
"metadata": {
"collapsed": false
}
},
{
"cell_type": "code",
"execution_count": 7,
"outputs": [],
"source": [],
"metadata": {
"collapsed": false
}
},
{
"cell_type": "code",
"execution_count": 8,
"outputs": [
{
"data": {
"text/plain": "Index(['Publication Type', 'Authors', 'Book Authors', 'Book Editors',\n 'Book Group Authors', 'Author Full Names', 'Book Author Full Names',\n 'Group Authors', 'Article Title', 'Source Title', 'Book Series Title',\n 'Book Series Subtitle', 'Language', 'Document Type', 'Conference Title',\n 'Conference Date', 'Conference Location', 'Conference Sponsor',\n 'Conference Host', 'Author Keywords', 'Keywords Plus', 'Abstract',\n 'Addresses', 'Affiliations', 'Reprint Addresses', 'Email Addresses',\n 'Researcher Ids', 'ORCIDs', 'Funding Orgs', 'Funding Name Preferred',\n 'Funding Text', 'Cited References', 'Cited Reference Count',\n 'Times Cited, WoS Core', 'Times Cited, All Databases',\n '180 Day Usage Count', 'Since 2013 Usage Count', 'Publisher',\n 'Publisher City', 'Publisher Address', 'ISSN', 'eISSN', 'ISBN',\n 'Journal Abbreviation', 'Journal ISO Abbreviation', 'Publication Date',\n 'Publication Year', 'Volume', 'Issue', 'Part Number', 'Supplement',\n 'Special Issue', 'Meeting Abstract', 'Start Page', 'End Page',\n 'Article Number', 'DOI', 'DOI Link', 'Book DOI', 'Early Access Date',\n 'Number of Pages', 'WoS Categories', 'Web of Science Index',\n 'Research Areas', 'IDS Number', 'Pubmed Id', 'Open Access Designations',\n 'Highly Cited Status', 'Hot Paper Status', 'Date of Export',\n 'UT (Unique WOS ID)', 'issn_var', 'issn', 'Domain_English',\n 'Field_English', 'SubField_English', '2.00 SEQ', 'Source_title',\n 'srcid', 'issn_type'],\n dtype='object')"
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"wos.columns"
],
"metadata": {
"collapsed": false
}
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [],
"source": [
"geotext = GeoText()\n",
"\n",
"def extract_location(input_text, key='countries'):\n",
" anomalies = {\"Malta\":\"Malta\",\n",
" \"Mongolia\":\"Mongolia\",\n",
" \"Quatar\":\"Qatar\",\n",
" \"Qatar\":\"Qatar\",\n",
" \"Ethiop\":\"Ethiopia\",\n",
" \"Nigeria\":\"Nigeria\",\n",
" \"BELAR\":\"Belarus\",\n",
" \"Venezuela\":\"Venezuela\",\n",
" \"Cyprus\":\"Cyprus\",\n",
" \"Ecuador\":\"Ecuador\",\n",
" \"U Arab\":\"United Arab Emirates\",\n",
" \"Syria\":\"Syria\",\n",
" \"Uganda\":\"Uganda\",\n",
" \"Yemen\":\"Yemen\",\n",
" \"Mali\":\"Mali\",\n",
" \"Senegal\":\"Senegal\",\n",
" \"Vatican\":\"Vatican\",\n",
" \"Uruguay\":\"Uruguay\",\n",
" \"Panama\":\"Panama\",\n",
" \"Fiji\":\"Fiji\",\n",
" \"Faroe\":\"Faroe Islands\",\n",
" \"Macedonia\":\"Macedonia\",\n",
" 'Mozambique':'Mozambique',\n",
" \"Kuwait\":\"Kuwait\",\n",
" \"Libya\":\"Libya\",\n",
" \"Turkiy\":\"Turkey\",\n",
" \"Liberia\":\"Liberia\",\n",
" \"Namibia\":\"Namibia\",\n",
" \"Ivoire\":\"Ivory Coast\",\n",
" \"Guatemala\":\"Gutemala\",\n",
" \"Paraguay\":\"Paraguay\",\n",
" \"Honduras\":\"Honduras\",\n",
" \"Nicaragua\":\"Nicaragua\",\n",
" \"Trinidad\":\"Trinidad & Tobago\",\n",
" \"Liechtenstein\":\"Liechtenstein\",\n",
" \"Greenland\":\"Denmark\"}\n",
"\n",
" extracted = geotext.extract(input_text=input_text)\n",
" found = extracted[key].keys()\n",
" if len(sorted(found))>0:\n",
" return sorted(found)[0]\n",
" elif key=='countries':\n",
" for i in ['Scotland','Wales','England', 'N Ireland']:\n",
" if i in input_text:\n",
" return 'United Kingdom'\n",
" for j in anomalies.keys():\n",
" if j in input_text:\n",
" return anomalies.get(j)\n",
" else:\n",
" return None\n",
"\n",
"with open('../eu_members.txt',\"r\") as f:\n",
" eu_countries=f.readline().split(\",\")\n",
" eu_countries=[i.strip() for i in eu_countries]\n",
"\n",
"def country_type(country):\n",
" if country in eu_countries:\n",
" return \"EU\"\n",
" elif country==\"China\":\n",
" return \"China\"\n",
" elif country in [\"Switzerland\", 'Norway','United Kingdom']:\n",
" return \"Non-EU associate\"\n",
" else:\n",
" return \"Other\"\n"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [],
"source": [
"locations = wos.groupby(record_col)[\"Addresses\"].apply(lambda x: x.str.split('[')).explode().reset_index().drop(columns=\"level_1\")\n",
"locations = locations[locations[\"Addresses\"]!=\"\"].copy()\n",
"locations[\"Address\"] = locations[\"Addresses\"].apply(lambda x:x.split(\"]\")[-1])\n",
"locations[\"Authors_of_address\"] = locations[\"Addresses\"].apply(lambda x:x.split(\"]\")[0])\n",
"locations[\"Country\"]=locations['Address'].apply(lambda x: extract_location(input_text=x, key='countries'))\n",
"locations[\"City\"]=locations['Address'].apply(lambda x: extract_location(input_text=x, key='cities'))\n",
"locations[\"Country_Type\"] = locations[\"Country\"].apply(lambda x: country_type(x))"
]
},
{
"cell_type": "code",
"execution_count": 11,
"outputs": [],
"source": [
"scope_types = [\"EU\",\"China\",\"Non-EU associate\"]\n",
"locations=locations[locations[\"Country_Type\"].isin(scope_types)]"
],
"metadata": {
"collapsed": false
}
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": " UT (Unique WOS ID) Address \n1 WOS:000208863600013 Radboud Univ Nijmegen, Dept Microbiol, Inst W... \\\n2 WOS:000208863600013 Zhejiang Univ, Dept Environm Engn, Hangzhou 3... \n3 WOS:000208863600013 Radboud Univ Nijmegen, Dept Mol Biol, Nijmege... \n4 WOS:000208863600013 Delft Univ Technol, Dept Biotechnol, Delft, N... \n6 WOS:000208863600266 Univ Bergen, Ctr Geobiol, Dept Biol, N-5020 B... \n\n Country City Country_Type Institution \n1 Netherlands Nijmegen EU Radboud Univ Nijmegen \n2 China Hangzhou China Zhejiang Univ \n3 Netherlands Mol EU Radboud Univ Nijmegen \n4 Netherlands Delft EU Delft Univ Technol \n6 Norway Bergen Non-EU associate Univ Bergen ",
"text/html": "\n\n
\n \n \n | \n UT (Unique WOS ID) | \n Address | \n Country | \n City | \n Country_Type | \n Institution | \n
\n \n \n \n 1 | \n WOS:000208863600013 | \n Radboud Univ Nijmegen, Dept Microbiol, Inst W... | \n Netherlands | \n Nijmegen | \n EU | \n Radboud Univ Nijmegen | \n
\n \n 2 | \n WOS:000208863600013 | \n Zhejiang Univ, Dept Environm Engn, Hangzhou 3... | \n China | \n Hangzhou | \n China | \n Zhejiang Univ | \n
\n \n 3 | \n WOS:000208863600013 | \n Radboud Univ Nijmegen, Dept Mol Biol, Nijmege... | \n Netherlands | \n Mol | \n EU | \n Radboud Univ Nijmegen | \n
\n \n 4 | \n WOS:000208863600013 | \n Delft Univ Technol, Dept Biotechnol, Delft, N... | \n Netherlands | \n Delft | \n EU | \n Delft Univ Technol | \n
\n \n 6 | \n WOS:000208863600266 | \n Univ Bergen, Ctr Geobiol, Dept Biol, N-5020 B... | \n Norway | \n Bergen | \n Non-EU associate | \n Univ Bergen | \n
\n \n
\n
"
},
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"univ_locations = locations[[record_col,\"Address\",\"Country\",\"City\",\"Country_Type\"]].copy()\n",
"univ_locations[\"Institution\"] = univ_locations[\"Address\"].apply(lambda x: x.split(\",\")[0])\n",
"univ_locations = univ_locations.drop_duplicates()\n",
"univ_locations.head()"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": " UT (Unique WOS ID) Country Country_Type \n0 WOS:000208863600013 China China \\\n1 WOS:000208863600013 Netherlands EU \n2 WOS:000208863600013 Netherlands EU \n3 WOS:000208863600013 Netherlands EU \n4 WOS:000208863600013 Netherlands EU \n\n author_str_id \n0 54c7bc6fe9b77434ca1bf04d763d843b \n1 6a775fcd8d11fcb084671b8cae4d6305 \n2 aa6accfdf7626441fe9191636dab4c35 \n3 b707b51d1ca3b5aa76de6ce6df20e6e4 \n4 df81f9da6c8f5c968c16ef0aab1bb8f9 ",
"text/html": "\n\n
\n \n \n | \n UT (Unique WOS ID) | \n Country | \n Country_Type | \n author_str_id | \n
\n \n \n \n 0 | \n WOS:000208863600013 | \n China | \n China | \n 54c7bc6fe9b77434ca1bf04d763d843b | \n
\n \n 1 | \n WOS:000208863600013 | \n Netherlands | \n EU | \n 6a775fcd8d11fcb084671b8cae4d6305 | \n
\n \n 2 | \n WOS:000208863600013 | \n Netherlands | \n EU | \n aa6accfdf7626441fe9191636dab4c35 | \n
\n \n 3 | \n WOS:000208863600013 | \n Netherlands | \n EU | \n b707b51d1ca3b5aa76de6ce6df20e6e4 | \n
\n \n 4 | \n WOS:000208863600013 | \n Netherlands | \n EU | \n df81f9da6c8f5c968c16ef0aab1bb8f9 | \n
\n \n
\n
"
},
"execution_count": 13,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"author_locations = locations.groupby([record_col,\"Country\",\"Country_Type\"])[\"Authors_of_address\"].apply(lambda x: x.str.split(';')).explode().reset_index().drop(columns=\"level_3\")\n",
"author_locations[\"Author_name\"] = author_locations[\"Authors_of_address\"].str.strip()\n",
"author_locations = author_locations.drop(columns=\"Authors_of_address\")\n",
"author_locations[\"author_str_id\"] = author_locations[\"Author_name\"].apply(lambda x:''.join(filter(str.isalnum, x.lower())))\n",
"author_locations[\"author_str_id\"] = author_locations[\"author_str_id\"].apply(md5hash)\n",
"author_locations = author_locations.drop(columns=\"Author_name\")\n",
"author_locations.head()"
]
},
{
"cell_type": "code",
"execution_count": 14,
"outputs": [
{
"data": {
"text/plain": " UT (Unique WOS ID) Country Country_Type \n0 WOS:000208863600013 China China \\\n4 WOS:000208863600013 Netherlands EU \n6 WOS:000208863600013 Netherlands EU \n7 WOS:000208863600266 China China \n13 WOS:000208863900217 China China \n... ... ... ... \n441911 WOS:000951829800021 China China \n441912 WOS:000951829800021 Netherlands EU \n441913 WOS:000952055000007 China China \n441914 WOS:000952055000007 China China \n441916 WOS:000952055000007 United Kingdom Non-EU associate \n\n author_str_id \n0 54c7bc6fe9b77434ca1bf04d763d843b \n4 df81f9da6c8f5c968c16ef0aab1bb8f9 \n6 df81f9da6c8f5c968c16ef0aab1bb8f9 \n7 5dfb4f0408a2cc8b7f36f5516938b62c \n13 00e44aa0a23a3fc9571b1053a4453a54 \n... ... \n441911 fc15bf7c800877e1c33f4a7397840faa \n441912 6b8763361150d7c3ceecf9eca9efd83b \n441913 80231479c1502ce8649717236023b6c9 \n441914 0af23824e538b0816c19239079d58c77 \n441916 b77dd6bc0ae30a2f96d43eebb1b3d89a \n\n[387172 rows x 4 columns]",
"text/html": "\n\n
\n \n \n | \n UT (Unique WOS ID) | \n Country | \n Country_Type | \n author_str_id | \n
\n \n \n \n 0 | \n WOS:000208863600013 | \n China | \n China | \n 54c7bc6fe9b77434ca1bf04d763d843b | \n
\n \n 4 | \n WOS:000208863600013 | \n Netherlands | \n EU | \n df81f9da6c8f5c968c16ef0aab1bb8f9 | \n
\n \n 6 | \n WOS:000208863600013 | \n Netherlands | \n EU | \n df81f9da6c8f5c968c16ef0aab1bb8f9 | \n
\n \n 7 | \n WOS:000208863600266 | \n China | \n China | \n 5dfb4f0408a2cc8b7f36f5516938b62c | \n
\n \n 13 | \n WOS:000208863900217 | \n China | \n China | \n 00e44aa0a23a3fc9571b1053a4453a54 | \n
\n \n ... | \n ... | \n ... | \n ... | \n ... | \n
\n \n 441911 | \n WOS:000951829800021 | \n China | \n China | \n fc15bf7c800877e1c33f4a7397840faa | \n
\n \n 441912 | \n WOS:000951829800021 | \n Netherlands | \n EU | \n 6b8763361150d7c3ceecf9eca9efd83b | \n
\n \n 441913 | \n WOS:000952055000007 | \n China | \n China | \n 80231479c1502ce8649717236023b6c9 | \n
\n \n 441914 | \n WOS:000952055000007 | \n China | \n China | \n 0af23824e538b0816c19239079d58c77 | \n
\n \n 441916 | \n WOS:000952055000007 | \n United Kingdom | \n Non-EU associate | \n b77dd6bc0ae30a2f96d43eebb1b3d89a | \n
\n \n
\n
387172 rows × 4 columns
\n
"
},
"execution_count": 14,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"author_locations[author_locations['author_str_id'].duplicated(False)]"
],
"metadata": {
"collapsed": false
}
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {},
"outputs": [],
"source": [
"author_primary_region = author_locations.sort_values(by=\"Country_Type\").drop_duplicates(subset=[record_col,\"author_str_id\"])\n",
"# author_primary_region\n",
"\n",
"china=author_primary_region[author_primary_region[\"Country_Type\"]==\"China\"][record_col].unique()\n",
"eu=author_primary_region[author_primary_region[\"Country_Type\"]==\"EU\"][record_col].unique()\n",
"assoc=author_primary_region[author_primary_region[\"Country_Type\"]==\"Non-EU associate\"][record_col].unique()\n",
"\n",
"\n",
"# records that have distinct authors with different country affiliations\n",
"valid_scope = wos[((wos[record_col].isin(china))\n",
" &\n",
" ((wos[record_col].isin(eu))\n",
" |\n",
" (wos[record_col].isin(assoc))))][record_col].unique()"
]
},
{
"cell_type": "code",
"execution_count": 16,
"outputs": [
{
"data": {
"text/plain": " UT (Unique WOS ID) Country Country_Type \n0 WOS:000208863600013 China China \\\n304939 WOS:000648878200015 China China \n304935 WOS:000648805900001 China China \n304934 WOS:000648805900001 China China \n304933 WOS:000648805900001 China China \n\n author_str_id \n0 54c7bc6fe9b77434ca1bf04d763d843b \n304939 043a846fd3ea05c308e9944b984b8d8f \n304935 4132592fad8ecaa0bc99a8148c348f45 \n304934 0bcfdc30b9929c5513eaabfe484ffd26 \n304933 3d5c738679e81c68cc67a06ecc686851 ",
"text/html": "\n\n
\n \n \n | \n UT (Unique WOS ID) | \n Country | \n Country_Type | \n author_str_id | \n
\n \n \n \n 0 | \n WOS:000208863600013 | \n China | \n China | \n 54c7bc6fe9b77434ca1bf04d763d843b | \n
\n \n 304939 | \n WOS:000648878200015 | \n China | \n China | \n 043a846fd3ea05c308e9944b984b8d8f | \n
\n \n 304935 | \n WOS:000648805900001 | \n China | \n China | \n 4132592fad8ecaa0bc99a8148c348f45 | \n
\n \n 304934 | \n WOS:000648805900001 | \n China | \n China | \n 0bcfdc30b9929c5513eaabfe484ffd26 | \n
\n \n 304933 | \n WOS:000648805900001 | \n China | \n China | \n 3d5c738679e81c68cc67a06ecc686851 | \n
\n \n
\n
"
},
"execution_count": 16,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"author_primary_region.head()"
],
"metadata": {
"collapsed": false
}
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Number of records: 35663\n",
"Number of valid cooperation records: 31861\n"
]
}
],
"source": [
"print(f'Number of records: {len(wos)}')\n",
"print(f'Number of valid cooperation records: {len(valid_scope)}')"
]
},
{
"cell_type": "code",
"execution_count": 18,
"outputs": [],
"source": [
"wos = wos[wos[record_col].isin(valid_scope)]\n",
"locations = locations[locations[record_col].isin(valid_scope)]\n",
"univ_locations = univ_locations[univ_locations[record_col].isin(valid_scope)]\n",
"author_locations = author_locations[author_locations[record_col].isin(valid_scope)]\n",
"author_primary_region = author_locations[author_locations[record_col].isin(valid_scope)]"
],
"metadata": {
"collapsed": false
}
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {},
"outputs": [],
"source": [
"affiliations = wos.groupby(record_col)[\"Affiliations\"].apply(lambda x: x.str.split(';')).explode().reset_index().drop(columns=\"level_1\")\n",
"affiliations[\"Affiliations\"] = affiliations[\"Affiliations\"].str.strip().str.upper().fillna(\"UNKNOWN\")\n",
"affiliations = affiliations.drop_duplicates()"
]
},
{
"cell_type": "code",
"execution_count": 20,
"outputs": [
{
"data": {
"text/plain": "Affiliations\nCHINESE ACADEMY OF SCIENCES 3623\nUNIVERSITY OF LONDON 1729\nUDICE-FRENCH RESEARCH UNIVERSITIES 1421\nTSINGHUA UNIVERSITY 1347\nCENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE (CNRS) 1330\n ... \nFRESHWATER FISHERIES RESEARCH CENTER, CAFS 1\nHEILONGJIANG RIVER FISHERIES RESEARCH INSTITUTE, CAFS 1\nINSTITUTE OF METEOROLOGY & WATER MANAGEMENT 1\nFEDERAL MINISTRY OF HEALTH - ETHIOPIA (FMOH) 1\nTANGSHAN UNIVERSITY 1\nName: count, Length: 6784, dtype: int64"
},
"execution_count": 20,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"affiliations[\"Affiliations\"].value_counts()"
],
"metadata": {
"collapsed": false
}
},
{
"cell_type": "code",
"execution_count": 21,
"outputs": [
{
"data": {
"text/plain": "Institution\n Chinese Acad Sci 3618\n Tsinghua Univ 1633\n Shanghai Jiao Tong Univ 1372\n Zhejiang Univ 1288\n Univ Elect Sci & Technol China 969\n ... \n Ludwig Boltzmann Inst Clin Forens Imaging 1\n Royal Brampton Hosp 1\n Inst Spacecraft Syst Engn CAST 1\n Sevalo Construct Machinery Remfg Co Ltd 1\n Int Digital Econ Acad 1\nName: count, Length: 14546, dtype: int64"
},
"execution_count": 21,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"univ_locations[\"Institution\"].value_counts()"
],
"metadata": {
"collapsed": false
}
},
{
"cell_type": "code",
"execution_count": 22,
"outputs": [
{
"data": {
"text/plain": "31861"
},
"execution_count": 22,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"univ_locations[record_col].nunique()"
],
"metadata": {
"collapsed": false
}
},
{
"cell_type": "code",
"execution_count": 23,
"outputs": [
{
"data": {
"text/plain": "31861"
},
"execution_count": 23,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"affiliations[record_col].nunique()"
],
"metadata": {
"collapsed": false
}
},
{
"cell_type": "code",
"execution_count": 24,
"outputs": [
{
"data": {
"text/plain": "138559"
},
"execution_count": 24,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"univ_locations[\"Institution\"].value_counts().sum()"
],
"metadata": {
"collapsed": false
}
},
{
"cell_type": "code",
"execution_count": 25,
"outputs": [
{
"data": {
"text/plain": "181832"
},
"execution_count": 25,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"affiliations[\"Affiliations\"].value_counts().sum()"
],
"metadata": {
"collapsed": false
}
},
{
"cell_type": "code",
"execution_count": 26,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": "WoS Categories\n Engineering, Electrical & Electronic 6066\nComputer Science, Artificial Intelligence 4859\nComputer Science, Information Systems 3740\n Telecommunications 3304\nEngineering, Electrical & Electronic 2451\n ... \n Criminology & Penology 1\nArea Studies 1\nMaterials Science, Paper & Wood 1\n Emergency Medicine 1\n Geology 1\nName: count, Length: 415, dtype: int64"
},
"execution_count": 26,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"wos_cat = wos.groupby(record_col)[\"WoS Categories\"].apply(lambda x: x.str.split(';')).explode().reset_index().drop(columns=\"level_1\")\n",
"wos_cat[\"WoS Categories\"].value_counts()"
]
},
{
"cell_type": "code",
"execution_count": 27,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": "Research Areas\nEngineering 12815\nComputer Science 12386\nTelecommunications 3577\nImaging Science & Photographic Technology 1949\nEnvironmental Sciences & Ecology 1887\n ... \nMusic 1\nAsian Studies 1\nCultural Studies 1\nArea Studies 1\nEmergency Medicine 1\nName: count, Length: 145, dtype: int64"
},
"execution_count": 27,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"wos_areas = wos.groupby(record_col)[\"Research Areas\"].apply(lambda x: x.str.split(';')).explode().reset_index().drop(columns=\"level_1\")\n",
"wos_areas[\"Research Areas\"] = wos_areas[\"Research Areas\"].str.strip()\n",
"wos_areas[\"Research Areas\"].value_counts()"
]
},
{
"cell_type": "code",
"execution_count": 29,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": "['Domain_English', 'Field_English', 'SubField_English']"
},
"execution_count": 29,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"[c for c in wos.columns if \"_English\" in c]"
]
},
{
"cell_type": "code",
"execution_count": 30,
"metadata": {},
"outputs": [],
"source": [
"metrix_levels = [c for c in wos.columns if \"_English\" in c]\n",
"for m in metrix_levels:\n",
" wos[m] = wos[m].replace({\"article-level classification\":\"Miscellaneous\"})\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"outputs": [],
"source": [],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"wos"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"metrix_levels"
]
},
{
"cell_type": "code",
"execution_count": 39,
"metadata": {},
"outputs": [],
"source": [
"outdir=\"wos_processed_data\""
]
},
{
"cell_type": "code",
"execution_count": 80,
"outputs": [],
"source": [
"record_countries = locations[[record_col,\"Country\"]].drop_duplicates()\n",
"record_author_locations = author_locations[[record_col,\"author_str_id\",\"Country\"]].drop_duplicates()\n",
"record_institution = univ_locations[[record_col,\"Institution\",\"Country\"]].drop_duplicates()\n",
"country_types = locations[[\"Country\",\"Country_Type\"]].drop_duplicates()"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 81,
"outputs": [],
"source": [
"country_collabs = record_countries.merge(record_countries, on=record_col)\n",
"country_collabs = country_collabs[country_collabs[\"Country_x\"]!=country_collabs[\"Country_y\"]]\n",
"country_collabs[\"weight\"] = 0.5"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 82,
"outputs": [],
"source": [
"inst_collabs = record_institution.merge(record_institution, on=record_col)\n",
"inst_collabs = inst_collabs[inst_collabs[\"Institution_x\"]!=inst_collabs[\"Institution_y\"]]\n",
"inst_collabs[\"weight\"] = 0.5"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 85,
"outputs": [
{
"data": {
"text/plain": "Index(['Publication Type', 'Authors', 'Book Authors', 'Book Editors',\n 'Book Group Authors', 'Author Full Names', 'Book Author Full Names',\n 'Group Authors', 'Article Title', 'Source Title', 'Book Series Title',\n 'Book Series Subtitle', 'Language', 'Document Type', 'Conference Title',\n 'Conference Date', 'Conference Location', 'Conference Sponsor',\n 'Conference Host', 'Author Keywords', 'Keywords Plus', 'Abstract',\n 'Addresses', 'Affiliations', 'Reprint Addresses', 'Email Addresses',\n 'Researcher Ids', 'ORCIDs', 'Funding Orgs', 'Funding Name Preferred',\n 'Funding Text', 'Cited References', 'Cited Reference Count',\n 'Times Cited, WoS Core', 'Times Cited, All Databases',\n '180 Day Usage Count', 'Since 2013 Usage Count', 'Publisher',\n 'Publisher City', 'Publisher Address', 'ISSN', 'eISSN', 'ISBN',\n 'Journal Abbreviation', 'Journal ISO Abbreviation', 'Publication Date',\n 'Publication Year', 'Volume', 'Issue', 'Part Number', 'Supplement',\n 'Special Issue', 'Meeting Abstract', 'Start Page', 'End Page',\n 'Article Number', 'DOI', 'DOI Link', 'Book DOI', 'Early Access Date',\n 'Number of Pages', 'WoS Categories', 'Web of Science Index',\n 'Research Areas', 'IDS Number', 'Pubmed Id', 'Open Access Designations',\n 'Highly Cited Status', 'Hot Paper Status', 'Date of Export',\n 'UT (Unique WOS ID)', 'issn_var', 'issn', 'Domain_English',\n 'Field_English', 'SubField_English', '2.00 SEQ', 'Source_title',\n 'srcid', 'issn_type'],\n dtype='object')"
},
"execution_count": 85,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"wos.columns"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 87,
"outputs": [
{
"data": {
"text/plain": "['Authors',\n 'Book Authors',\n 'Book Group Authors',\n 'Author Full Names',\n 'Book Author Full Names',\n 'Group Authors',\n 'Addresses',\n 'Reprint Addresses',\n 'Email Addresses',\n 'ORCIDs',\n 'Publisher Address']"
},
"execution_count": 87,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"drop_cols = [ws for ws in wos.columns if ((\"uthor\" in ws or \"ddress\" in ws or \"ORCID\" in ws) and \"eyword\" not in ws)]\n",
"drop_cols"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 88,
"outputs": [],
"source": [
"os.makedirs(outdir, exist_ok=True)\n",
"\n",
"wos.drop(columns=drop_cols).to_excel(f\"{outdir}/wos_processed.xlsx\", index=False)\n",
"\n",
"record_countries.to_excel(f\"{outdir}/wos_countries.xlsx\", index=False)\n",
"\n",
"record_author_locations.to_excel(f\"{outdir}/wos_author_locations.xlsx\", index=False)\n",
"\n",
"record_institution.to_excel(f\"{outdir}/wos_institution_locations.xlsx\", index=False)\n",
"\n",
"kw_df.to_excel(f\"{outdir}/wos_keywords.xlsx\", index=False)\n",
"\n",
"country_types.to_excel(f\"{outdir}/wos_country_types.xlsx\", index=False)"
],
"metadata": {
"collapsed": false
}
},
{
"cell_type": "code",
"execution_count": 89,
"outputs": [],
"source": [
"wos.drop(columns=drop_cols).to_csv(f\"{outdir}/wos_processed.csv\", index=False, sep='\\t')\n",
"\n",
"record_countries.to_csv(f\"{outdir}/wos_countries.csv\", index=False, sep='\\t')\n",
"\n",
"record_author_locations.to_csv(f\"{outdir}/wos_author_locations.csv\", index=False, sep='\\t')\n",
"\n",
"record_institution.to_csv(f\"{outdir}/wos_institution_locations.csv\", index=False, sep='\\t')\n",
"\n",
"kw_df.to_csv(f\"{outdir}/wos_keywords.csv\", index=False, sep='\\t')\n",
"\n",
"country_types.to_csv(f\"{outdir}/wos_country_types.csv\", index=False, sep='\\t')\n",
"\n",
"inst_collabs.to_csv(f\"{outdir}/wos_inst_collabs.csv\", index=False, sep='\\t')\n",
"\n",
"country_collabs.to_csv(f\"{outdir}/wos_country_collabs.csv\", index=False, sep='\\t')"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": null,
"outputs": [],
"source": [
"# Basic network layout"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "markdown",
"source": [
"# Simple NLP part"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%% md\n"
}
}
},
{
"cell_type": "code",
"execution_count": 32,
"outputs": [
{
"data": {
"text/plain": ""
},
"execution_count": 32,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"text/plain": "",
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAk0AAAGdCAYAAAAPLEfqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAs8klEQVR4nO3de3RU5b3/8U8gJAQkE25JyI8AqSCXgnK4NEaRlpJDkGjl0h6psaCkUDRREBGDl1TFNhAVAbWkHhFwCYqcA0jhgMSgcKoRJBq5VANoMFAygRqS4SIhJPv3Byd7MSTAQxiYyfB+rbXXYvZ+5pnvN5u95rP27NkTYFmWJQAAAFxQI28XAAAA0BAQmgAAAAwQmgAAAAwQmgAAAAwQmgAAAAwQmgAAAAwQmgAAAAwQmgAAAAwEersAf1FdXa2DBw+qRYsWCggI8HY5AADAgGVZOnr0qKKiotSo0YXPJRGaPOTgwYOKjo72dhkAAKAe9u/fr/bt219wDKHJQ1q0aCHpzB89NDTUy9UAAAATLpdL0dHR9vv4hRCaPKTmI7nQ0FBCEwAADYzJpTVcCA4AAGCA0AQAAGCA0AQAAGCA0AQAAGCA0AQAAGCA0AQAAGCA0AQAAGCA0AQAAGCA0AQAAGCA0AQAAGCA0AQAAGCA0AQAAGCA0AQAAGCA0AQAAGAg0NsFALj2dEpb6+0SLtm+mYneLgGAl3GmCQAAwAChCQAAwAChCQAAwAChCQAAwAChCQAAwAChCQAAwAChCQAAwAChCQAAwAChCQAAwAChCQAAwAChCQAAwAChCQAAwAChCQAAwAChCQAAwAChCQAAwAChCQAAwAChCQAAwAChCQAAwAChCQAAwAChCQAAwAChCQAAwAChCQAAwAChCQAAwAChCQAAwAChCQAAwAChCQAAwAChCQAAwAChCQAAwIBXQ9PmzZt15513KioqSgEBAVq1apXbdsuylJ6ernbt2ikkJETx8fHas2eP25jS0lIlJSUpNDRUYWFhSk5O1rFjx9zGbN++XbfddpuaNm2q6OhoZWZm1qpl+fLl6tatm5o2bapevXrpf/7nfzzeLwAAaLi8GpqOHz+um266Sa+99lqd2zMzMzVv3jxlZWVpy5Ytat68uRISEnTy5El7TFJSknbt2qXs7GytWbNGmzdv1oQJE+ztLpdLQ4YMUceOHZWXl6cXXnhBzzzzjF5//XV7zKeffqrf/va3Sk5O1pdffqnhw4dr+PDh2rlz55VrHgAANCgBlmVZ3i5CkgICArRy5UoNHz5c0pmzTFFRUXr00Uc1depUSVJ5ebkiIiK0aNEijR49Wl9//bV69Oihzz//XP369ZMkrV+/XsOGDdOBAwcUFRWl+fPn68knn5TT6VRQUJAkKS0tTatWrdI333wjSbr77rt1/PhxrVmzxq7n5ptvVu/evZWVlWVUv8vlksPhUHl5uUJDQz31ZwH8Uqe0td4u4ZLtm5no7RIAXAGX8v7ts9c0FRYWyul0Kj4+3l7ncDgUGxur3NxcSVJubq7CwsLswCRJ8fHxatSokbZs2WKPGThwoB2YJCkhIUEFBQU6cuSIPebs16kZU/M6damoqJDL5XJbAACA//LZ0OR0OiVJERERbusjIiLsbU6nU+Hh4W7bAwMD1apVK7cxdc1x9mucb0zN9rpkZGTI4XDYS3R09KW2CAAAGhCfDU2+bvr06SovL7eX/fv3e7skAABwBflsaIqMjJQklZSUuK0vKSmxt0VGRurQoUNu20+fPq3S0lK3MXXNcfZrnG9Mzfa6BAcHKzQ01G0BAAD+y2dDU0xMjCIjI5WTk2Ovc7lc2rJli+Li4iRJcXFxKisrU15enj1m48aNqq6uVmxsrD1m8+bNqqystMdkZ2era9euatmypT3m7NepGVPzOgAAAF4NTceOHVN+fr7y8/Mlnbn4Oz8/X0VFRQoICNDkyZP1/PPPa/Xq1dqxY4fGjBmjqKgo+xt23bt319ChQzV+/Hht3bpVn3zyiVJTUzV69GhFRUVJku655x4FBQUpOTlZu3bt0rJlyzR37lxNmTLFrmPSpElav369XnrpJX3zzTd65plntG3bNqWmpl7tPwkAAPBRgd588W3btmnQoEH245ogM3bsWC1atEjTpk3T8ePHNWHCBJWVlWnAgAFav369mjZtaj9nyZIlSk1N1eDBg9WoUSONGjVK8+bNs7c7HA5t2LBBKSkp6tu3r9q0aaP09HS3ezndcsstWrp0qZ566ik98cQT6tKli1atWqWePXtehb8CAABoCHzmPk0NHfdpAsxxnyYAvsIv7tMEAADgSwhNAAAABghNAAAABghNAAAABghNAAAABghNAAAABghNAAAABghNAAAABghNAAAABghNAAAABghNAAAABghNAAAABghNAAAABghNAAAABghNAAAABghNAAAABghNAAAABghNAAAABghNAAAABghNAAAABghNAAAABghNAAAABghNAAAABghNAAAABghNAAAABghNAAAABghNAAAABghNAAAABghNAAAABghNAAAABghNAAAABghNAAAABghNAAAABghNAAAABghNAAAABghNAAAABgK9XQAANASd0tZ6u4RLtm9mordLAPwKZ5oAAAAMEJoAAAAMEJoAAAAMEJoAAAAMEJoAAAAMEJoAAAAMEJoAAAAMEJoAAAAMEJoAAAAMEJoAAAAMEJoAAAAMEJoAAAAMEJoAAAAMEJoAAAAMEJoAAAAMEJoAAAAM+HRoqqqq0tNPP62YmBiFhITo+uuv14wZM2RZlj3Gsiylp6erXbt2CgkJUXx8vPbs2eM2T2lpqZKSkhQaGqqwsDAlJyfr2LFjbmO2b9+u2267TU2bNlV0dLQyMzOvSo8AAKBh8OnQNGvWLM2fP1+vvvqqvv76a82aNUuZmZl65ZVX7DGZmZmaN2+esrKytGXLFjVv3lwJCQk6efKkPSYpKUm7du1Sdna21qxZo82bN2vChAn2dpfLpSFDhqhjx47Ky8vTCy+8oGeeeUavv/76Ve0XAAD4rgDr7NM2PuaOO+5QRESEFixYYK8bNWqUQkJC9Pbbb8uyLEVFRenRRx/V1KlTJUnl5eWKiIjQokWLNHr0aH399dfq0aOHPv/8c/Xr10+StH79eg0bNkwHDhxQVFSU5s+fryeffFJOp1NBQUGSpLS0NK1atUrffPONUa0ul0sOh0Pl5eUKDQ318F8C8C+d0tZ6u4Rrwr6Zid4uAfB5l/L+7dNnmm655Rbl5ORo9+7dkqSvvvpKf//733X77bdLkgoLC+V0OhUfH28/x+FwKDY2Vrm5uZKk3NxchYWF2YFJkuLj49WoUSNt2bLFHjNw4EA7MElSQkKCCgoKdOTIkTprq6iokMvlclsAAID/CvR2AReSlpYml8ulbt26qXHjxqqqqtKf/vQnJSUlSZKcTqckKSIiwu15ERER9jan06nw8HC37YGBgWrVqpXbmJiYmFpz1Gxr2bJlrdoyMjL07LPPeqBLAADQEPj0mab33ntPS5Ys0dKlS/XFF19o8eLFevHFF7V48WJvl6bp06ervLzcXvbv3+/tkgAAwBXk02eaHnvsMaWlpWn06NGSpF69eun7779XRkaGxo4dq8jISElSSUmJ2rVrZz+vpKREvXv3liRFRkbq0KFDbvOePn1apaWl9vMjIyNVUlLiNqbmcc2YcwUHBys4OPjymwQAAA2CT59pOnHihBo1ci+xcePGqq6uliTFxMQoMjJSOTk59naXy6UtW7YoLi5OkhQXF6eysjLl5eXZYzZu3Kjq6mrFxsbaYzZv3qzKykp7THZ2trp27VrnR3MAAODa49Oh6c4779Sf/vQnrV27Vvv27dPKlSs1e/ZsjRgxQpIUEBCgyZMn6/nnn9fq1au1Y8cOjRkzRlFRURo+fLgkqXv37ho6dKjGjx+vrVu36pNPPlFqaqpGjx6tqKgoSdI999yjoKAgJScna9euXVq2bJnmzp2rKVOmeKt1AADgY3z647lXXnlFTz/9tB588EEdOnRIUVFR+sMf/qD09HR7zLRp03T8+HFNmDBBZWVlGjBggNavX6+mTZvaY5YsWaLU1FQNHjxYjRo10qhRozRv3jx7u8Ph0IYNG5SSkqK+ffuqTZs2Sk9Pd7uXEwAAuLb59H2aGhLu0wSY4z5NVwf3aQIuzm/u0wQAAOArCE0AAAAGCE0AAAAGCE0AAAAGCE0AAAAGCE0AAAAGCE0AAAAGCE0AAAAGCE0AAAAGCE0AAAAGCE0AAAAGCE0AAAAGCE0AAAAGCE0AAAAGCE0AAAAGCE0AAAAGCE0AAAAGCE0AAAAGCE0AAAAGCE0AAAAGCE0AAAAGCE0AAAAGCE0AAAAGCE0AAAAGCE0AAAAGCE0AAAAGCE0AAAAGCE0AAAAGCE0AAAAGCE0AAAAGCE0AAAAG6hWavvvuO0/XAQAA4NPqFZo6d+6sQYMG6e2339bJkyc9XRMAAIDPqVdo+uKLL3TjjTdqypQpioyM1B/+8Adt3brV07UBAAD4jHqFpt69e2vu3Lk6ePCg3nzzTRUXF2vAgAHq2bOnZs+ercOHD3u6TgAAAK+6rAvBAwMDNXLkSC1fvlyzZs3S3r17NXXqVEVHR2vMmDEqLi72VJ0AAABedVmhadu2bXrwwQfVrl07zZ49W1OnTtW3336r7OxsHTx4UHfddZen6gQAAPCqwPo8afbs2Vq4cKEKCgo0bNgwvfXWWxo2bJgaNTqTwWJiYrRo0SJ16tTJk7UCAAB4Tb1C0/z58zVu3Djdd999ateuXZ1jwsPDtWDBgssqDgAAwFfUKzTt2bPnomOCgoI0duzY+kwPAADgc+p1TdPChQu1fPnyWuuXL1+uxYsXX3ZRAAAAvqZeoSkjI0Nt2rSptT48PFx//vOfL7soAAAAX1Ov0FRUVKSYmJha6zt27KiioqLLLgoAAMDX1Cs0hYeHa/v27bXWf/XVV2rduvVlFwUAAOBr6hWafvvb3+rhhx/WRx99pKqqKlVVVWnjxo2aNGmSRo8e7ekaAQAAvK5e356bMWOG9u3bp8GDBysw8MwU1dXVGjNmDNc0AQAAv1Sv0BQUFKRly5ZpxowZ+uqrrxQSEqJevXqpY8eOnq4PAADAJ9QrNNW44YYbdMMNN3iqFgAAAJ9Vr9BUVVWlRYsWKScnR4cOHVJ1dbXb9o0bN3qkOAAAAF9Rr9A0adIkLVq0SImJierZs6cCAgI8XRcAAIBPqVdoevfdd/Xee+9p2LBhnq4HAADAJ9XrlgNBQUHq3Lmzp2sBAADwWfUKTY8++qjmzp0ry7I8XU8t//znP3XvvfeqdevW9rf0tm3bZm+3LEvp6elq166dQkJCFB8fX+sHhUtLS5WUlKTQ0FCFhYUpOTlZx44dcxuzfft23XbbbWratKmio6OVmZl5xXsDAAANR70+nvv73/+ujz76SOvWrdNPf/pTNWnSxG37ihUrPFLckSNHdOutt2rQoEFat26d2rZtqz179qhly5b2mMzMTM2bN0+LFy9WTEyMnn76aSUkJOgf//iHmjZtKklKSkpScXGxsrOzVVlZqfvvv18TJkzQ0qVLJUkul0tDhgxRfHy8srKytGPHDo0bN05hYWGaMGGCR3oBAAANW71CU1hYmEaMGOHpWmqZNWuWoqOjtXDhQnvd2b95Z1mW5syZo6eeekp33XWXJOmtt95SRESEVq1apdGjR+vrr7/W+vXr9fnnn6tfv36SpFdeeUXDhg3Tiy++qKioKC1ZskSnTp3Sm2++qaCgIP30pz9Vfn6+Zs+eTWgCAACS6hmazg4xV9Lq1auVkJCg3/zmN9q0aZP+3//7f3rwwQc1fvx4SVJhYaGcTqfi4+Pt5zgcDsXGxio3N1ejR49Wbm6uwsLC7MAkSfHx8WrUqJG2bNmiESNGKDc3VwMHDlRQUJA9JiEhQbNmzdKRI0fczmwBAIBrU72uaZKk06dP68MPP9Rf//pXHT16VJJ08ODBWtcKXY7vvvtO8+fPV5cuXfTBBx/ogQce0MMPP6zFixdLkpxOpyQpIiLC7XkRERH2NqfTqfDwcLftgYGBatWqlduYuuY4+zXOVVFRIZfL5bYAAAD/Va8zTd9//72GDh2qoqIiVVRU6N///d/VokULzZo1SxUVFcrKyvJIcdXV1erXr5/9e3b/9m//pp07dyorK0tjx471yGvUV0ZGhp599lmv1gAAAK6eep1pmjRpkvr166cjR44oJCTEXj9ixAjl5OR4rLh27dqpR48ebuu6d++uoqIiSVJkZKQkqaSkxG1MSUmJvS0yMlKHDh1y23769GmVlpa6jalrjrNf41zTp09XeXm5vezfv78+LQIAgAaiXqHpf//3f/XUU0+5XQMkSZ06ddI///lPjxQmSbfeeqsKCgrc1u3evdv+YeCYmBhFRka6BTWXy6UtW7YoLi5OkhQXF6eysjLl5eXZYzZu3Kjq6mrFxsbaYzZv3qzKykp7THZ2trp27Xre65mCg4MVGhrqtgAAAP9Vr9BUXV2tqqqqWusPHDigFi1aXHZRNR555BF99tln+vOf/6y9e/dq6dKlev3115WSkiJJCggI0OTJk/X8889r9erV2rFjh8aMGaOoqCgNHz5c0pkzU0OHDtX48eO1detWffLJJ0pNTdXo0aMVFRUlSbrnnnsUFBSk5ORk7dq1S8uWLdPcuXM1ZcoUj/UCAAAatnqFpiFDhmjOnDn244CAAB07dkx//OMfPfrTKv3799fKlSv1zjvvqGfPnpoxY4bmzJmjpKQke8y0adP00EMPacKECerfv7+OHTum9evX2/dokqQlS5aoW7duGjx4sIYNG6YBAwbo9ddft7c7HA5t2LBBhYWF6tu3rx599FGlp6dzuwEAAGALsOpxW+8DBw4oISFBlmVpz5496tevn/bs2aM2bdpo8+bNtb6tdi1wuVxyOBwqLy/nozrgIjqlrfV2CdeEfTMTvV0C4PMu5f27Xt+ea9++vb766iu9++672r59u44dO6bk5GQlJSW5XRgOAADgL+oVmqQz9zq69957PVkLAACAz6pXaHrrrbcuuH3MmDH1KgbApeOjLgC4OuoVmiZNmuT2uLKyUidOnFBQUJCaNWtGaAIAAH6nXt+eO3LkiNty7NgxFRQUaMCAAXrnnXc8XSMAAIDX1fu3587VpUsXzZw5s9ZZKAAAAH/gsdAknbk4/ODBg56cEgAAwCfU65qm1atXuz22LEvFxcV69dVXdeutt3qkMAAAAF9Sr9BU8xMlNQICAtS2bVv98pe/1EsvveSJugAAAHxKvUJTdXW1p+sAAADwaR69pgkAAMBf1etM05QpU4zHzp49uz4vAQAA4FPqFZq+/PJLffnll6qsrFTXrl0lSbt371bjxo3Vp08fe1xAQIBnqgQAAPCyeoWmO++8Uy1atNDixYvVsmVLSWdueHn//ffrtttu06OPPurRIgEAALytXtc0vfTSS8rIyLADkyS1bNlSzz//PN+eAwAAfqleocnlcunw4cO11h8+fFhHjx697KIAAAB8Tb1C04gRI3T//fdrxYoVOnDggA4cOKD//u//VnJyskaOHOnpGgEAALyuXtc0ZWVlaerUqbrnnntUWVl5ZqLAQCUnJ+uFF17waIEAAAC+oF6hqVmzZvrLX/6iF154Qd9++60k6frrr1fz5s09WhwAAICvuKybWxYXF6u4uFhdunRR8+bNZVmWp+oCAADwKfUKTT/88IMGDx6sG264QcOGDVNxcbEkKTk5mdsNAAAAv1Sv0PTII4+oSZMmKioqUrNmzez1d999t9avX++x4gAAAHxFva5p2rBhgz744AO1b9/ebX2XLl30/fffe6QwAAAAX1KvM03Hjx93O8NUo7S0VMHBwZddFAAAgK+pV2i67bbb9NZbb9mPAwICVF1drczMTA0aNMhjxQEAAPiKen08l5mZqcGDB2vbtm06deqUpk2bpl27dqm0tFSffPKJp2sEAADwunqdaerZs6d2796tAQMG6K677tLx48c1cuRIffnll7r++us9XSMAAIDXXfKZpsrKSg0dOlRZWVl68sknr0RNAAAAPueSzzQ1adJE27dvvxK1AAAA+Kx6fTx37733asGCBZ6uBQAAwGfV60Lw06dP680339SHH36ovn371vrNudmzZ3ukOAAAAF9xSaHpu+++U6dOnbRz50716dNHkrR79263MQEBAZ6rDgAAwEdcUmjq0qWLiouL9dFHH0k687Mp8+bNU0RExBUpDgAAwFdc0jVNlmW5PV63bp2OHz/u0YIAAAB8Ub0uBK9xbogCAADwV5cUmgICAmpds8Q1TAAA4FpwSdc0WZal++67z/5R3pMnT2rixIm1vj23YsUKz1UIAADgAy4pNI0dO9bt8b333uvRYgAAAHzVJYWmhQsXXqk6AAAAfNplXQgOAABwrSA0AQAAGCA0AQAAGCA0AQAAGCA0AQAAGCA0AQAAGCA0AQAAGCA0AQAAGCA0AQAAGCA0AQAAGCA0AQAAGCA0AQAAGCA0AQAAGCA0AQAAGGhQoWnmzJkKCAjQ5MmT7XUnT55USkqKWrdureuuu06jRo1SSUmJ2/OKioqUmJioZs2aKTw8XI899phOnz7tNubjjz9Wnz59FBwcrM6dO2vRokVXoSMAANBQNJjQ9Pnnn+uvf/2rbrzxRrf1jzzyiP72t79p+fLl2rRpkw4ePKiRI0fa26uqqpSYmKhTp07p008/1eLFi7Vo0SKlp6fbYwoLC5WYmKhBgwYpPz9fkydP1u9//3t98MEHV60/AADg2xpEaDp27JiSkpL0n//5n2rZsqW9vry8XAsWLNDs2bP1y1/+Un379tXChQv16aef6rPPPpMkbdiwQf/4xz/09ttvq3fv3rr99ts1Y8YMvfbaazp16pQkKSsrSzExMXrppZfUvXt3paam6te//rVefvllr/QLAAB8T4MITSkpKUpMTFR8fLzb+ry8PFVWVrqt79atmzp06KDc3FxJUm5urnr16qWIiAh7TEJCglwul3bt2mWPOXfuhIQEew4AAIBAbxdwMe+++66++OILff7557W2OZ1OBQUFKSwszG19RESEnE6nPebswFSzvWbbhca4XC79+OOPCgkJqfXaFRUVqqiosB+7XK5Lbw4AADQYPn2maf/+/Zo0aZKWLFmipk2berscNxkZGXI4HPYSHR3t7ZIAAMAV5NOhKS8vT4cOHVKfPn0UGBiowMBAbdq0SfPmzVNgYKAiIiJ06tQplZWVuT2vpKREkZGRkqTIyMha36areXyxMaGhoXWeZZKk6dOnq7y83F7279/viZYBAICP8unQNHjwYO3YsUP5+fn20q9fPyUlJdn/btKkiXJycuznFBQUqKioSHFxcZKkuLg47dixQ4cOHbLHZGdnKzQ0VD169LDHnD1HzZiaOeoSHBys0NBQtwUAAPgvn76mqUWLFurZs6fbuubNm6t169b2+uTkZE2ZMkWtWrVSaGioHnroIcXFxenmm2+WJA0ZMkQ9evTQ7373O2VmZsrpdOqpp55SSkqKgoODJUkTJ07Uq6++qmnTpmncuHHauHGj3nvvPa1du/bqNgwAAHyWT4cmEy+//LIaNWqkUaNGqaKiQgkJCfrLX/5ib2/cuLHWrFmjBx54QHFxcWrevLnGjh2r5557zh4TExOjtWvX6pFHHtHcuXPVvn17vfHGG0pISPBGSwAAwAcFWJZlebsIf+ByueRwOFReXs5HdbiqOqVxRhR12zcz0dslAD7vUt6/ffqaJgAAAF9BaAIAADBAaAIAADBAaAIAADBAaAIAADBAaAIAADBAaAIAADBAaAIAADBAaAIAADBAaAIAADBAaAIAADBAaAIAADBAaAIAADBAaAIAADBAaAIAADBAaAIAADBAaAIAADBAaAIAADBAaAIAADBAaAIAADBAaAIAADBAaAIAADBAaAIAADAQ6O0CAABXRqe0td4u4ZLtm5no7RKA8+JMEwAAgAFCEwAAgAFCEwAAgAFCEwAAgAFCEwAAgAFCEwAAgAFCEwAAgAFCEwAAgAFCEwAAgAFCEwAAgAFCEwAAgAFCEwAAgAFCEwAAgAFCEwAAgAFCEwAAgAFCEwAAgAFCEwAAgAFCEwAAgAFCEwAAgAFCEwAAgAFCEwAAgAFCEwAAgAFCEwAAgAFCEwAAgAFCEwAAgAFCEwAAgAFCEwAAgAFCEwAAgAFCEwAAgAGfDk0ZGRnq37+/WrRoofDwcA0fPlwFBQVuY06ePKmUlBS1bt1a1113nUaNGqWSkhK3MUVFRUpMTFSzZs0UHh6uxx57TKdPn3Yb8/HHH6tPnz4KDg5W586dtWjRoivdHgAAaEB8OjRt2rRJKSkp+uyzz5Sdna3KykoNGTJEx48ft8c88sgj+tvf/qbly5dr06ZNOnjwoEaOHGlvr6qqUmJiok6dOqVPP/1Uixcv1qJFi5Senm6PKSwsVGJiogYNGqT8/HxNnjxZv//97/XBBx9c1X4BAIDvCrAsy/J2EaYOHz6s8PBwbdq0SQMHDlR5ebnatm2rpUuX6te//rUk6ZtvvlH37t2Vm5urm2++WevWrdMdd9yhgwcPKiIiQpKUlZWlxx9/XIcPH1ZQUJAef/xxrV27Vjt37rRfa/To0SorK9P69euNanO5XHI4HCovL1doaKjnmwfOo1PaWm+XAHjMvpmJ3i4B15hLef/26TNN5yovL5cktWrVSpKUl5enyspKxcfH22O6deumDh06KDc3V5KUm5urXr162YFJkhISEuRyubRr1y57zNlz1IypmaMuFRUVcrlcbgsAAPBfDSY0VVdXa/Lkybr11lvVs2dPSZLT6VRQUJDCwsLcxkZERMjpdNpjzg5MNdtrtl1ojMvl0o8//lhnPRkZGXI4HPYSHR192T0CAADf1WBCU0pKinbu3Kl3333X26VIkqZPn67y8nJ72b9/v7dLAgAAV1CgtwswkZqaqjVr1mjz5s1q3769vT4yMlKnTp1SWVmZ29mmkpISRUZG2mO2bt3qNl/Nt+vOHnPuN+5KSkoUGhqqkJCQOmsKDg5WcHDwZfcGAAAaBp8+02RZllJTU7Vy5Upt3LhRMTExbtv79u2rJk2aKCcnx15XUFCgoqIixcXFSZLi4uK0Y8cOHTp0yB6TnZ2t0NBQ9ejRwx5z9hw1Y2rmAAAA8OkzTSkpKVq6dKnef/99tWjRwr4GyeFwKCQkRA6HQ8nJyZoyZYpatWql0NBQPfTQQ4qLi9PNN98sSRoyZIh69Oih3/3ud8rMzJTT6dRTTz2llJQU+0zRxIkT9eqrr2ratGkaN26cNm7cqPfee09r1/KtJAAAcIZPn2maP3++ysvL9Ytf/ELt2rWzl2XLltljXn75Zd1xxx0aNWqUBg4cqMjISK1YscLe3rhxY61Zs0aNGzdWXFyc7r33Xo0ZM0bPPfecPSYmJkZr165Vdna2brrpJr300kt64403lJCQcFX7BQAAvqtB3afJl3GfJngL92mCP+E+Tbja/PY+TQAAAN5CaAIAADBAaAIAADBAaAIAADBAaAIAADBAaAIAADBAaAIAADBAaAIAADBAaAIAADBAaAIAADBAaAIAADBAaAIAADBAaAIAADBAaAIAADBAaAIAADBAaAIAADBAaAIAADBAaAIAADBAaAIAADBAaAIAADBAaAIAADBAaAIAADBAaAIAADBAaAIAADAQ6O0CAF/SKW2tt0sAAPgozjQBAAAYIDQBAAAYIDQBAAAYIDQBAAAYIDQBAAAYIDQBAAAYIDQBAAAYIDQBAAAYIDQBAAAYIDQBAAAYIDQBAAAYIDQBAAAYIDQBAAAYIDQBAAAYIDQBAAAYIDQBAAAYCPR2AQAA1OiUttbbJVyyfTMTvV0CrhLONAEAABggNAEAABggNAEAABggNAEAABggNAEAABggNAEAABggNAEAABggNAEAABggNAEAABggNAEAABggNAEAABggNJ3jtddeU6dOndS0aVPFxsZq69at3i4JAAD4AH6w9yzLli3TlClTlJWVpdjYWM2ZM0cJCQkqKChQeHi4t8trcBriD28CAHA+AZZlWd4uwlfExsaqf//+evXVVyVJ1dXVio6O1kMPPaS0tLQLPtflcsnhcKi8vFyhoaFXo1yfR2gCAN+1b2ait0vwCZfy/s2Zpv9z6tQp5eXlafr06fa6Ro0aKT4+Xrm5ubXGV1RUqKKiwn5cXl4u6cwfH2dUV5zwdgkAgPPg/eqMmr+DyTkkQtP/+de//qWqqipFRES4rY+IiNA333xTa3xGRoaeffbZWuujo6OvWI0AAHiKY463K/AtR48elcPhuOAYQlM9TZ8+XVOmTLEfV1dXq7S0VK1bt1ZAQIDRHC6XS9HR0dq/f/8195EevdM7vV876J3efbl3y7J09OhRRUVFXXQsoen/tGnTRo0bN1ZJSYnb+pKSEkVGRtYaHxwcrODgYLd1YWFh9Xrt0NBQn/4PdSXRO71fa+id3q81DaH3i51hqsEtB/5PUFCQ+vbtq5ycHHtddXW1cnJyFBcX58XKAACAL+BM01mmTJmisWPHql+/fvrZz36mOXPm6Pjx47r//vu9XRoAAPAyQtNZ7r77bh0+fFjp6elyOp3q3bu31q9fX+vicE8JDg7WH//4x1of810L6J3erzX0Tu/XGn/snfs0AQAAGOCaJgAAAAOEJgAAAAOEJgAAAAOEJgAAAAOEJg/JyMhQ//791aJFC4WHh2v48OEqKChwG3Py5EmlpKSodevWuu666zRq1KhaN9M8l2VZSk9PV7t27RQSEqL4+Hjt2bPnSrZyyS7We2lpqR566CF17dpVISEh6tChgx5++GH79/rO57777lNAQIDbMnTo0CvdziUx2e+/+MUvavUxceLEC87rD/t93759tfquWZYvX37eeRvCfp8/f75uvPFG+6Z9cXFxWrdunb3dX4916cK9+/OxLl18v/vrsS5duHd/PtZrseARCQkJ1sKFC62dO3da+fn51rBhw6wOHTpYx44ds8dMnDjRio6OtnJycqxt27ZZN998s3XLLbdccN6ZM2daDofDWrVqlfXVV19Zv/rVr6yYmBjrxx9/vNItGbtY7zt27LBGjhxprV692tq7d6+Vk5NjdenSxRo1atQF5x07dqw1dOhQq7i42F5KS0uvRkvGTPb7z3/+c2v8+PFufZSXl19wXn/Y76dPn3brubi42Hr22Wet6667zjp69Oh5520I+3316tXW2rVrrd27d1sFBQXWE088YTVp0sTauXOnZVn+e6xb1oV79+dj3bIuvt/99Vi3rAv37s/H+rkITVfIoUOHLEnWpk2bLMuyrLKyMqtJkybW8uXL7TFff/21JcnKzc2tc47q6morMjLSeuGFF+x1ZWVlVnBwsPXOO+9c2QYuw7m91+W9996zgoKCrMrKyvOOGTt2rHXXXXddgQqvnLp6//nPf25NmjTJeA5/3u+9e/e2xo0bd8F5GuJ+tyzLatmypfXGG29cU8d6jZre6+Kvx3qNs3u/Vo71Ghfa7/56rPPx3BVSczq6VatWkqS8vDxVVlYqPj7eHtOtWzd16NBBubm5dc5RWFgop9Pp9hyHw6HY2NjzPscXnNv7+caEhoYqMPDC91f9+OOPFR4erq5du+qBBx7QDz/84NFaPe18vS9ZskRt2rRRz549NX36dJ04ceK8c/jrfs/Ly1N+fr6Sk5MvOldD2u9VVVV69913dfz4ccXFxV1Tx/q5vdfFX4/18/V+LRzrF9vv/nqsS9wR/Iqorq7W5MmTdeutt6pnz56SJKfTqaCgoFo/6hsRESGn01nnPDXrz70j+YWe42119X6uf/3rX5oxY4YmTJhwwbmGDh2qkSNHKiYmRt9++62eeOIJ3X777crNzVXjxo2vRPmX5Xy933PPPerYsaOioqK0fft2Pf744yooKNCKFSvqnMdf9/uCBQvUvXt33XLLLRecq6Hs9x07diguLk4nT57Uddddp5UrV6pHjx7Kz8/3+2P9fL2fyx+P9Qv17u/Huul+97dj3Y23T3X5o4kTJ1odO3a09u/fb69bsmSJFRQUVGts//79rWnTptU5zyeffGJJsg4ePOi2/je/+Y31H//xH54t2kPq6v1s5eXl1s9+9jNr6NCh1qlTpy5p7m+//daSZH344YeeKNXjLtZ7jZycHEuStXfv3jq3++N+P3HihOVwOKwXX3zxkuf21f1eUVFh7dmzx9q2bZuVlpZmtWnTxtq1a9c1cayfr/ez+euxbtJ7DX871k1698dj/Wx8POdhqampWrNmjT766CO1b9/eXh8ZGalTp06prKzMbXxJSYkiIyPrnKtm/bnfurnQc7zpfL3XOHr0qIYOHaoWLVpo5cqVatKkySXN/5Of/ERt2rTR3r17PVWyx1ys97PFxsZK0nn78Lf9Lkn/9V//pRMnTmjMmDGXPL+v7vegoCB17txZffv2VUZGhm666SbNnTv3mjjWz9d7DX8+1i/W+9n87Vg36d0fj/WzEZo8xLIspaamauXKldq4caNiYmLctvft21dNmjRRTk6Ova6goEBFRUXnvRYgJiZGkZGRbs9xuVzasmXLeZ/jDRfrXTpT95AhQxQUFKTVq1eradOml/w6Bw4c0A8//KB27dp5omyPMOn9XPn5+ZJ03j78ab/XWLBggX71q1+pbdu2l/w6vrjf61JdXa2Kigq/PtbPp6Z3yX+P9fM5u/dz+cuxfj519e73x7p3T3T5jwceeMByOBzWxx9/7Pb1yRMnTthjJk6caHXo0MHauHGjtW3bNisuLs6Ki4tzm6dr167WihUr7MczZ860wsLCrPfff9/avn27ddddd/nc11Ev1nt5ebkVGxtr9erVy9q7d6/bmNOnT9vznN370aNHralTp1q5ublWYWGh9eGHH1p9+vSxunTpYp08edIrfdblYr3v3bvXeu6556xt27ZZhYWF1vvvv2/95Cc/sQYOHOg2jz/u9xp79uyxAgICrHXr1tU5T0Pc72lpadamTZuswsJCa/v27VZaWpoVEBBgbdiwwbIs/z3WLevCvfvzsW5ZF+7dn491y7r4/3nL8s9j/VyEJg+RVOeycOFCe8yPP/5oPfjgg1bLli2tZs2aWSNGjLCKi4trzXP2c6qrq62nn37aioiIsIKDg63BgwdbBQUFV6krMxfr/aOPPjrvmMLCQrd5ap5z4sQJa8iQIVbbtm2tJk2aWB07drTGjx9vOZ3Oq9/gBVys96KiImvgwIFWq1atrODgYKtz587WY489VuveLf6432tMnz7dio6Otqqqqs47T0Pb7+PGjbM6duxoBQUFWW3btrUGDx7s9ubhr8e6ZV24d38+1i3rwr3787FuWRf/P29Z/nmsnyvAsizrypzDAgAA8B9c0wQAAGCA0AQAAGCA0AQAAGCA0AQAAGCA0AQAAGCA0AQAAGCA0AQAAGCA0AQAAGCA0AQAAGCA0AQAAGCA0AQAAGCA0AQAAGDg/wNxXW/d/7HRSQAAAABJRU5ErkJggg==\n"
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"import spacy\n",
"\n",
"nlp = spacy.load(\"en_core_web_lg\")\n",
"wos_nlp = wos.merge(wos_kwd_concat, on=record_col)\n",
"wos_nlp[\"Document\"] = wos_nlp[\"Article Title\"].str.cat(wos_nlp[[\"Abstract\", \"keyword_all\"]].fillna(\"\"), sep=' - ')\n",
"# wos_kwd_test[\"BERT_KWDS\"] = wos_kwd_test[\"Document\"].map(kwd_extract)\n",
"\n",
"vectors = list()\n",
"vector_norms = list()\n",
"\n",
"for doc in nlp.pipe(wos_nlp['Document'].astype('unicode').values, batch_size=300,\n",
" n_process=4):\n",
" vectors.append(doc.vector)\n",
" vector_norms.append(doc.vector_norm)\n",
"\n",
"wos_nlp['vector'] = vectors\n",
"wos_nlp['vector_norm'] = vector_norms\n",
"wos_nlp['vector_norm'].plot(kind=\"hist\")"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 35,
"outputs": [
{
"data": {
"text/plain": " UT (Unique WOS ID) TNSE-X TNSE-Y\n0 WOS:000641589600020 131.783783 -4.202979\n1 WOS:000590197400003 74.897812 89.280334\n2 WOS:000510863400004 84.939049 23.416033\n3 WOS:000403039400031 -39.527546 54.230900\n4 WOS:000439363600016 -59.109379 72.877693",
"text/html": "\n\n
\n \n \n | \n UT (Unique WOS ID) | \n TNSE-X | \n TNSE-Y | \n
\n \n \n \n 0 | \n WOS:000641589600020 | \n 131.783783 | \n -4.202979 | \n
\n \n 1 | \n WOS:000590197400003 | \n 74.897812 | \n 89.280334 | \n
\n \n 2 | \n WOS:000510863400004 | \n 84.939049 | \n 23.416033 | \n
\n \n 3 | \n WOS:000403039400031 | \n -39.527546 | \n 54.230900 | \n
\n \n 4 | \n WOS:000439363600016 | \n -59.109379 | \n 72.877693 | \n
\n \n
\n
"
},
"execution_count": 35,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from sklearn.manifold import TSNE\n",
"import matplotlib.pyplot as plt\n",
"import seaborn as sns\n",
"# % matplotlib inline\n",
"\n",
"vector_data = pd.DataFrame(wos_nlp[\"vector\"].to_list(), index=wos_nlp[record_col]).reset_index()\n",
"vector_data.head()\n",
"\n",
"labels = vector_data.values[:, 0]\n",
"record_vectors = vector_data.values[:, 1:]\n",
"\n",
"tsne_model = TSNE(perplexity=30, n_components=2, init='pca', n_iter=5000, random_state=42, metric='cosine')\n",
"tnse_2d = tsne_model.fit_transform(record_vectors)\n",
"tnse_data = pd.DataFrame(tnse_2d, index=labels).reset_index()\n",
"tnse_data.columns = [record_col, \"TNSE-X\", \"TNSE-Y\"]\n",
"tnse_data.head()"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 36,
"outputs": [
{
"data": {
"text/plain": "