{ "cells": [ { "cell_type": "code", "execution_count": 72, "metadata": { "collapsed": true }, "outputs": [], "source": [ "import pandas as pd\n", "import seaborn as sns\n", "import os\n", "import matplotlib.pyplot as plt" ] }, { "cell_type": "code", "execution_count": 73, "outputs": [], "source": [ "agg_df = pd.DataFrame()\n", "\n", "workdir_path = 'wos_downloads/aggregated'\n", "for root, dirs, files in os.walk(workdir_path):\n", " for filename in files:\n", " if 'analyze_' in filename:\n", " path=os.path.join(root, filename)\n", " with open(os.path.join(root, 'query.txt'),'r') as f:\n", " query = f.readline()\n", " chunk = pd.read_csv(path, sep='\\t')[[\"Publication Years\",\"Record Count\"]]\n", " chunk[\"name\"] = filename.replace(\".txt\",\"\")\n", " chunk[\"query\"] = query\n", " agg_df = pd.concat([chunk,agg_df],ignore_index=True)" ], "metadata": { "collapsed": false } }, { "cell_type": "code", "execution_count": 74, "outputs": [], "source": [ "agg_df[\"region\"] = agg_df[\"query\"].apply(lambda x: \"EU+China\" if \"CU\" in x else \"Global\")\n", "agg_df[\"kw_token\"] = agg_df[\"query\"].apply(lambda x: x.split(\"TS=(\")[-1].split(\")\")[0])\n", "agg_df[\"kw_token\"] = agg_df[\"kw_token\"].apply(lambda x: \"OR COMPOSITE\" if \" OR \" in x else x)" ], "metadata": { "collapsed": false } }, { "cell_type": "code", "execution_count": 83, "outputs": [], "source": [ "agg_df = agg_df[~agg_df[\"Record Count\"].isna()]" ], "metadata": { "collapsed": false } }, { "cell_type": "code", "execution_count": 62, "outputs": [ { "data": { "text/plain": " query Record Count\n0 CU=(PEOPLES R CHINA OR HONG KONG) AND CU=(AUST... 972.0\n1 CU=(PEOPLES R CHINA OR HONG KONG) AND CU=(AUST... 451.0\n2 CU=(PEOPLES R CHINA OR HONG KONG) AND CU=(AUST... 12.0\n3 CU=(PEOPLES R CHINA OR HONG KONG) AND CU=(AUST... 5.0\n4 CU=(PEOPLES R CHINA OR HONG KONG) AND CU=(AUST... 2631.0\n.. ... ...\n275 TS=(\"ubiquitous computing\") AND PY=(2011-2022) 3655.0\n276 TS=(\"unstructured data*\") AND PY=(2011-2022) 3386.0\n277 TS=(\"unsupervised deep learning\") AND PY=(2011... 728.0\n278 TS=(\"word embedding*\") AND PY=(2011-2022) 7068.0\n279 TS=(\"word vector*\") AND PY=(2011-2022) 1747.0\n\n[280 rows x 2 columns]", "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
queryRecord Count
0CU=(PEOPLES R CHINA OR HONG KONG) AND CU=(AUST...972.0
1CU=(PEOPLES R CHINA OR HONG KONG) AND CU=(AUST...451.0
2CU=(PEOPLES R CHINA OR HONG KONG) AND CU=(AUST...12.0
3CU=(PEOPLES R CHINA OR HONG KONG) AND CU=(AUST...5.0
4CU=(PEOPLES R CHINA OR HONG KONG) AND CU=(AUST...2631.0
.........
275TS=(\"ubiquitous computing\") AND PY=(2011-2022)3655.0
276TS=(\"unstructured data*\") AND PY=(2011-2022)3386.0
277TS=(\"unsupervised deep learning\") AND PY=(2011...728.0
278TS=(\"word embedding*\") AND PY=(2011-2022)7068.0
279TS=(\"word vector*\") AND PY=(2011-2022)1747.0
\n

280 rows × 2 columns

\n
" }, "execution_count": 62, "metadata": {}, "output_type": "execute_result" } ], "source": [ "agg_df.groupby(\"query\",as_index=False)[\"Record Count\"].sum()" ], "metadata": { "collapsed": false } }, { "cell_type": "code", "execution_count": 63, "outputs": [], "source": [ "# agg_df = agg_df[agg_df[\"Publication Years\"].str.startswith(\"20\", na=False)].copy()\n", "# agg_df[\"Publication Years\"] = agg_df[\"Publication Years\"].astype(int)\n", "# agg_df[((agg_df[\"Publication Years\"]>2010) & (agg_df[\"Publication Years\"]<2023))]" ], "metadata": { "collapsed": false } }, { "cell_type": "code", "execution_count": 84, "outputs": [ { "data": { "text/plain": "Publication Years\n2022 314\n2019 305\n2021 305\n2020 302\n2018 296\n2017 287\n2016 281\n2015 271\n2014 258\n2013 251\n2012 233\n2011 224\n2023 52\n2017 4\n2014 4\n2019 4\n2021 4\n2018 4\n2020 4\n2022 4\n2016 3\n2015 3\n2013 3\n2012 3\n2011 3\n2023 2\nName: count, dtype: int64" }, "execution_count": 84, "metadata": {}, "output_type": "execute_result" } ], "source": [ "agg_df[\"Publication Years\"].value_counts()" ], "metadata": { "collapsed": false } }, { "cell_type": "code", "execution_count": 64, "outputs": [], "source": [], "metadata": { "collapsed": false } }, { "cell_type": "code", "execution_count": 85, "outputs": [], "source": [ "agg_df.to_excel(r'C:\\Users\\radvanyi\\PycharmProjects\\ZSI_analytics\\WOS\\wos_processed_data\\query_yearly_agg.xlsx', index=False)" ], "metadata": { "collapsed": false } } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.6" } }, "nbformat": 4, "nbformat_minor": 0 }