You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
ZSI_Reconnect_China/WOS/wos_analysis/.ipynb_checkpoints/wos_analyses-checkpoint.ipynb

22196 lines
12 MiB
Plaintext

2 years ago
{
"cells": [
{
"cell_type": "code",
"execution_count": 327,
"id": "40038234",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
" <script type=\"text/javascript\">\n",
" window.PlotlyConfig = {MathJaxConfig: 'local'};\n",
" if (window.MathJax && window.MathJax.Hub && window.MathJax.Hub.Config) {window.MathJax.Hub.Config({SVG: {font: \"STIX-Web\"}});}\n",
" if (typeof require !== 'undefined') {\n",
" require.undef(\"plotly\");\n",
" define('plotly', function(require, exports, module) {\n",
" /**\n",
"* plotly.js v2.20.0\n",
"* Copyright 2012-2023, Plotly, Inc.\n",
"* All rights reserved.\n",
"* Licensed under the MIT license\n",
"*/\n",
"/*! For license information please see plotly.min.js.LICENSE.txt */\n",
"!function(t,e){\"object\"==typeof exports&&\"object\"==typeof module?module.exports=e():\"function\"==typeof define&&define.amd?define([],e):\"object\"==typeof exports?exports.Plotly=e():t.Plotly=e()}(self,(function(){return function(){var t={98847:function(t,e,r){\"use strict\";var n=r(71828),i={\"X,X div\":'direction:ltr;font-family:\"Open Sans\",verdana,arial,sans-serif;margin:0;padding:0;',\"X input,X button\":'font-family:\"Open Sans\",verdana,arial,sans-serif;',\"X input:focus,X button:focus\":\"outline:none;\",\"X a\":\"text-decoration:none;\",\"X a:hover\":\"text-decoration:none;\",\"X .crisp\":\"shape-rendering:crispEdges;\",\"X .user-select-none\":\"-webkit-user-select:none;-moz-user-select:none;-ms-user-select:none;-o-user-select:none;user-select:none;\",\"X svg\":\"overflow:hidden;\",\"X svg a\":\"fill:#447adb;\",\"X svg a:hover\":\"fill:#3c6dc5;\",\"X .main-svg\":\"position:absolute;top:0;left:0;pointer-events:none;\",\"X .main-svg .draglayer\":\"pointer-events:all;\",\"X .cursor-default\":\"cursor:default;\",\"X .cursor-pointer\":\"cursor:pointer;\",\"X .cursor-crosshair\":\"cursor:crosshair;\",\"X .cursor-move\":\"cursor:move;\",\"X .cursor-col-resize\":\"cursor:col-resize;\",\"X .cursor-row-resize\":\"cursor:row-resize;\",\"X .cursor-ns-resize\":\"cursor:ns-resize;\",\"X .cursor-ew-resize\":\"cursor:ew-resize;\",\"X .cursor-sw-resize\":\"cursor:sw-resize;\",\"X .cursor-s-resize\":\"cursor:s-resize;\",\"X .cursor-se-resize\":\"cursor:se-resize;\",\"X .cursor-w-resize\":\"cursor:w-resize;\",\"X .cursor-e-resize\":\"cursor:e-resize;\",\"X .cursor-nw-resize\":\"cursor:nw-resize;\",\"X .cursor-n-resize\":\"cursor:n-resize;\",\"X .cursor-ne-resize\":\"cursor:ne-resize;\",\"X .cursor-grab\":\"cursor:-webkit-grab;cursor:grab;\",\"X .modebar\":\"position:absolute;top:2px;right:2px;\",\"X .ease-bg\":\"-webkit-transition:background-color .3s ease 0s;-moz-transition:background-color .3s ease 0s;-ms-transition:background-color .3s ease 0s;-o-transition:background-color .3s ease 0s;transition:background-color .3s ease 0s;\",\"X .modebar--hover>:not(.watermark)\":\"opacity:0;-webkit-transition:opacity .3s ease 0s;-moz-transition:opacity .3s ease 0s;-ms-transition:opacity .3s ease 0s;-o-transition:opacity .3s ease 0s;transition:opacity .3s ease 0s;\",\"X:hover .modebar--hover .modebar-group\":\"opacity:1;\",\"X .modebar-group\":\"float:left;display:inline-block;box-sizing:border-box;padding-left:8px;position:relative;vertical-align:middle;white-space:nowrap;\",\"X .modebar-btn\":\"position:relative;font-size:16px;padding:3px 4px;height:22px;cursor:pointer;line-height:normal;box-sizing:border-box;\",\"X .modebar-btn svg\":\"position:relative;top:2px;\",\"X .modebar.vertical\":\"display:flex;flex-direction:column;flex-wrap:wrap;align-content:flex-end;max-height:100%;\",\"X .modebar.vertical svg\":\"top:-1px;\",\"X .modebar.vertical .modebar-group\":\"display:block;float:none;padding-left:0px;padding-bottom:8px;\",\"X .modebar.vertical .modebar-group .modebar-btn\":\"display:block;text-align:center;\",\"X [data-title]:before,X [data-title]:after\":\"position:absolute;-webkit-transform:translate3d(0, 0, 0);-moz-transform:translate3d(0, 0, 0);-ms-transform:translate3d(0, 0, 0);-o-transform:translate3d(0, 0, 0);transform:translate3d(0, 0, 0);display:none;opacity:0;z-index:1001;pointer-events:none;top:110%;right:50%;\",\"X [data-title]:hover:before,X [data-title]:hover:after\":\"display:block;opacity:1;\",\"X [data-title]:before\":'content:\"\";position:absolute;background:rgba(0,0,0,0);border:6px solid rgba(0,0,0,0);z-index:1002;margin-top:-12px;border-bottom-color:#69738a;margin-right:-6px;',\"X [data-title]:after\":\"content:attr(data-title);background:#69738a;color:#fff;padding:8px 10px;font-size:12px;line-height:12px;white-space:nowrap;margin-right:-18px;border-radius:2px;\",\"X .vertical [data-title]:before,X .vertical [data-title]:after\":\"top:0%;right:200%;\",\"X .vertical [data-title]:before\":\"border:6px solid rgba(0,0,0,0);border-left-color:#69738a;margin-top:8px;margin-right:-30px;\",Y:'font-family:\"Open
" });\n",
" require(['plotly'], function(Plotly) {\n",
" window._Plotly = Plotly;\n",
" });\n",
" }\n",
" </script>\n",
" "
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"import pandas as pd\n",
"import janitor\n",
"import matplotlib.pyplot as plt\n",
"import seaborn as sns\n",
"from matplotlib.ticker import MaxNLocator\n",
"import math\n",
"import plotly.express as px\n",
"import plotly.offline as pyo\n",
"pyo.init_notebook_mode()\n",
"\n",
"import plotly.io as pio\n",
"pio.renderers.default = \"plotly_mimetype+notebook\"\n",
"\n",
"import country_converter as coco\n",
"cc = coco.CountryConverter()\n",
"\n",
"\n",
"%matplotlib inline"
]
},
{
"cell_type": "code",
"execution_count": 328,
"id": "ea3629f5",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAxoAAABpCAYAAAC9HlWgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAEOUlEQVR4nO3dsWrdZRzG8V+Tw2kNhUqgoTGpILh2EHIHmV0UxGvwElx19QIEwcnFycE14AVkC7hWKPKnTSmhTWrPyTF/B/fmnPSpr2/z+cwv4eHHGfIlHHJjHMexAAAAgtZaDwAAAN49QgMAAIgTGgAAQJzQAAAA4oQGAAAQJzQAAIA4oQEAAMQJDQAAIG6yzKO9vb2az+d19+7dt70HAAD4Hzs+Pq7pdFqHh4evfbdUaMxms5qdL+rhs5eRcdfF/fXHrSd06dHandYTurP76qT1hC5drG+3ntCfyWnrBV26OdlsPaE7zxdnrSd06fbGi9YTuvN0fq/1hO7Mzxc1juOl75YKja2trXr47GX9sf/1Gw+7Tg52P289oUsf3/ms9YTu/Prbd60ndOmvD35oPaE7F9s/tZ7QpU8+/Kb1hO58/+cvrSd06ctPf2w9oTtfHf3cekJ3fv/2i9raWL/0ne9oAAAAcUIDAACIExoAAECc0AAAAOKEBgAAECc0AACAOKEBAADECQ0AACBOaAAAAHFCAwAAiBMaAABAnNAAAADihAYAABAnNAAAgDihAQAAxAkNAAAgTmgAAABxQgMAAIgTGgAAQJzQAAAA4oQGAAAQJzQAAIA4oQEAAMQJDQAAIE5oAAAAcUIDAACIExoAAECc0AAAAOKEBgAAECc0AACAOKEBAADECQ0AACBOaAAAAHFCAwAAiBMaAABAnNAAAADihAYAABAnNAAAgDihAQAAxAkNAAAgTmgAAABxQgMAAIgTGgAAQJzQAAAA4oQGAAAQJzQAAIA4oQEAAMQJDQAAIE5oAAAAcUIDAACIExoAAECc0AAAAOKEBgAAECc0AACAOKEBAADECQ0AACBOaAAAAHFCAwAAiBMaAABAnNAAAADihAYAABAnNAAAgDihAQAAxAkNAAAgTmgAAABxQgMAAIgTGgAAQJzQAAAA4oQGAAAQJzQAAIA4oQEAAMQJDQAAIE5oAAAAcUIDAACIuzGO43jZowcPHtTsfFGL997/Dya9O+6vP249oUuP1u60ntCd3VcnrSd06WJ9u/WE/kxOWy/o0s3JZusJ3Xm+OGs9oUu3N160ntCdp/N7rSd0Z37ypKaT9To6Onrtu8kyP+z8/LxujGN9tLkRGXddDMOtqqra3vbLzLKGYahbNXOzFQ2ns6ryWVvFMAxVixM3W9EwnFSVz9oqhmGoqidutqKz4d/QcLflDcNQZ2drbraiv4+HqvJZW8Xx2aSm0+ml75YKjZ2dnaqqOjg4eLNV18z+/n5Vudsq3Oxq3G11bnY17rY6N7sad1udm12Nu709vqMBAADECQ0AACBOaAAAAHFCAwAAiBMaAABAnNAAAADilvqHfQAAAKvwFw0AACBOaAAAAHFCAwAAiBMaAABAnNAAAADihAYAABAnNAAAgDihAQAAxAkNAAAg7h8aEZ8cDhrd9QAAAABJRU5ErkJggg==\n",
"text/plain": [
"<Figure size 1000x100 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"sns.set_theme(context='notebook', style='ticks', palette='colorblind', font='sans-serif', font_scale=1, color_codes=True, rc=None)\n",
"sns.palplot(sns.color_palette())"
]
},
{
"cell_type": "code",
"execution_count": 329,
"id": "fb7baf32",
"metadata": {},
"outputs": [],
"source": [
"outdir=\"wos_processed_data\"\n",
"\n",
"wos = pd.read_excel(f\"../{outdir}/wos_processed.xlsx\")\n",
"wos_univ = pd.read_excel(f\"../{outdir}/wos_institution_locations_harmonized.xlsx\")"
]
},
{
"cell_type": "code",
"execution_count": 330,
"id": "4dd8e081",
"metadata": {},
"outputs": [],
"source": [
"def eurovoc_classer(x):\n",
" eurovoc_classification = {\"Eastern Europe\":[\"Bulgaria\",\"Czech Republic\",\"Croatia\",\"Hungary\",\"Poland\",\"Romania\",\"Slovakia\",\"Slovenia\"],\n",
" \"Northern Europe\":[\"Denmark\",\"Estonia\",\"Finland\",\"Latvia\",\"Lithuania\",\"Sweden\",\"Norway\",\"Iceland\"],\n",
" \"Southern Europe\":[\"Cyprus\",\"Greece\",\"Italy\",\"Portugal\",\"Spain\",\"Malta\"],\n",
" \"Western Europe\":[\"Austria\",\"Belgium\",\"France\",\"Germany\",\"Luxembourg\",\"Netherlands\",\"Switzerland\",\"United Kingdom\",\"Ireland\"]}\n",
" if x == 'China':\n",
" return x\n",
" for k in eurovoc_classification.keys():\n",
" if x in eurovoc_classification[k]:\n",
" return k"
]
},
{
"cell_type": "code",
"execution_count": 331,
"id": "eb933d66",
"metadata": {},
"outputs": [],
"source": [
"wos_country = pd.read_excel(f\"../{outdir}/wos_countries.xlsx\")\n",
"wos_country_types = pd.read_excel(f\"../{outdir}/wos_country_types.xlsx\")"
]
},
{
"cell_type": "code",
"execution_count": 332,
"id": "cd0b0efa",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Country</th>\n",
" <th>Country_Type</th>\n",
" <th>Eurovoc_Class</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>Belgium</td>\n",
" <td>EU</td>\n",
" <td>Western Europe</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>China</td>\n",
" <td>China</td>\n",
" <td>China</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>Luxembourg</td>\n",
" <td>EU</td>\n",
" <td>Western Europe</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>Netherlands</td>\n",
" <td>EU</td>\n",
" <td>Western Europe</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>Norway</td>\n",
" <td>Non-EU associate</td>\n",
" <td>Northern Europe</td>\n",
" </tr>\n",
" <tr>\n",
" <th>5</th>\n",
" <td>United Kingdom</td>\n",
" <td>Non-EU associate</td>\n",
" <td>Western Europe</td>\n",
" </tr>\n",
" <tr>\n",
" <th>6</th>\n",
" <td>France</td>\n",
" <td>EU</td>\n",
" <td>Western Europe</td>\n",
" </tr>\n",
" <tr>\n",
" <th>7</th>\n",
" <td>Sweden</td>\n",
" <td>EU</td>\n",
" <td>Northern Europe</td>\n",
" </tr>\n",
" <tr>\n",
" <th>8</th>\n",
" <td>Italy</td>\n",
" <td>EU</td>\n",
" <td>Southern Europe</td>\n",
" </tr>\n",
" <tr>\n",
" <th>9</th>\n",
" <td>Denmark</td>\n",
" <td>EU</td>\n",
" <td>Northern Europe</td>\n",
" </tr>\n",
" <tr>\n",
" <th>10</th>\n",
" <td>Germany</td>\n",
" <td>EU</td>\n",
" <td>Western Europe</td>\n",
" </tr>\n",
" <tr>\n",
" <th>11</th>\n",
" <td>Slovenia</td>\n",
" <td>EU</td>\n",
" <td>Eastern Europe</td>\n",
" </tr>\n",
" <tr>\n",
" <th>12</th>\n",
" <td>Estonia</td>\n",
" <td>EU</td>\n",
" <td>Northern Europe</td>\n",
" </tr>\n",
" <tr>\n",
" <th>13</th>\n",
" <td>Finland</td>\n",
" <td>EU</td>\n",
" <td>Northern Europe</td>\n",
" </tr>\n",
" <tr>\n",
" <th>14</th>\n",
" <td>Bulgaria</td>\n",
" <td>EU</td>\n",
" <td>Eastern Europe</td>\n",
" </tr>\n",
" <tr>\n",
" <th>15</th>\n",
" <td>Slovakia</td>\n",
" <td>EU</td>\n",
" <td>Eastern Europe</td>\n",
" </tr>\n",
" <tr>\n",
" <th>16</th>\n",
" <td>Spain</td>\n",
" <td>EU</td>\n",
" <td>Southern Europe</td>\n",
" </tr>\n",
" <tr>\n",
" <th>17</th>\n",
" <td>Poland</td>\n",
" <td>EU</td>\n",
" <td>Eastern Europe</td>\n",
" </tr>\n",
" <tr>\n",
" <th>18</th>\n",
" <td>Czech Republic</td>\n",
" <td>EU</td>\n",
" <td>Eastern Europe</td>\n",
" </tr>\n",
" <tr>\n",
" <th>19</th>\n",
" <td>Greece</td>\n",
" <td>EU</td>\n",
" <td>Southern Europe</td>\n",
" </tr>\n",
" <tr>\n",
" <th>20</th>\n",
" <td>Malta</td>\n",
" <td>EU</td>\n",
" <td>Southern Europe</td>\n",
" </tr>\n",
" <tr>\n",
" <th>21</th>\n",
" <td>Austria</td>\n",
" <td>EU</td>\n",
" <td>Western Europe</td>\n",
" </tr>\n",
" <tr>\n",
" <th>22</th>\n",
" <td>Switzerland</td>\n",
" <td>Non-EU associate</td>\n",
" <td>Western Europe</td>\n",
" </tr>\n",
" <tr>\n",
" <th>23</th>\n",
" <td>Ireland</td>\n",
" <td>EU</td>\n",
" <td>Western Europe</td>\n",
" </tr>\n",
" <tr>\n",
" <th>24</th>\n",
" <td>Portugal</td>\n",
" <td>EU</td>\n",
" <td>Southern Europe</td>\n",
" </tr>\n",
" <tr>\n",
" <th>25</th>\n",
" <td>Romania</td>\n",
" <td>EU</td>\n",
" <td>Eastern Europe</td>\n",
" </tr>\n",
" <tr>\n",
" <th>26</th>\n",
" <td>Hungary</td>\n",
" <td>EU</td>\n",
" <td>Eastern Europe</td>\n",
" </tr>\n",
" <tr>\n",
" <th>27</th>\n",
" <td>Cyprus</td>\n",
" <td>EU</td>\n",
" <td>Southern Europe</td>\n",
" </tr>\n",
" <tr>\n",
" <th>28</th>\n",
" <td>Croatia</td>\n",
" <td>EU</td>\n",
" <td>Eastern Europe</td>\n",
" </tr>\n",
" <tr>\n",
" <th>29</th>\n",
" <td>Lithuania</td>\n",
" <td>EU</td>\n",
" <td>Northern Europe</td>\n",
" </tr>\n",
" <tr>\n",
" <th>30</th>\n",
" <td>Latvia</td>\n",
" <td>EU</td>\n",
" <td>Northern Europe</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" Country Country_Type Eurovoc_Class\n",
"0 Belgium EU Western Europe\n",
"1 China China China\n",
"2 Luxembourg EU Western Europe\n",
"3 Netherlands EU Western Europe\n",
"4 Norway Non-EU associate Northern Europe\n",
"5 United Kingdom Non-EU associate Western Europe\n",
"6 France EU Western Europe\n",
"7 Sweden EU Northern Europe\n",
"8 Italy EU Southern Europe\n",
"9 Denmark EU Northern Europe\n",
"10 Germany EU Western Europe\n",
"11 Slovenia EU Eastern Europe\n",
"12 Estonia EU Northern Europe\n",
"13 Finland EU Northern Europe\n",
"14 Bulgaria EU Eastern Europe\n",
"15 Slovakia EU Eastern Europe\n",
"16 Spain EU Southern Europe\n",
"17 Poland EU Eastern Europe\n",
"18 Czech Republic EU Eastern Europe\n",
"19 Greece EU Southern Europe\n",
"20 Malta EU Southern Europe\n",
"21 Austria EU Western Europe\n",
"22 Switzerland Non-EU associate Western Europe\n",
"23 Ireland EU Western Europe\n",
"24 Portugal EU Southern Europe\n",
"25 Romania EU Eastern Europe\n",
"26 Hungary EU Eastern Europe\n",
"27 Cyprus EU Southern Europe\n",
"28 Croatia EU Eastern Europe\n",
"29 Lithuania EU Northern Europe\n",
"30 Latvia EU Northern Europe"
]
},
"execution_count": 332,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"wos_country_types[\"Eurovoc_Class\"] = wos_country_types[\"Country\"].map(eurovoc_classer)\n",
"wos_country_types"
]
},
{
"cell_type": "code",
"execution_count": 333,
"id": "70a54b41",
"metadata": {},
"outputs": [],
"source": [
"# len(wos),len(wos_univ_locations)"
]
},
{
"cell_type": "code",
"execution_count": 334,
"id": "c6534513",
"metadata": {},
"outputs": [],
"source": [
"\n",
"# wos_addresses = pd.read_excel(f\"/{outdir}/wos_addresses.xlsx\")\n",
"\n",
"# wos_affiliations = pd.read_excel(f\"/{outdir}/wos_affiliations.xlsx\")\n",
"\n",
"# wos_author_locations = pd.read_excel(f\"/{outdir}/wos_author_locations.xlsx\")\n",
"\n",
"# wos_univ_locations = pd.read_excel(f\"/{outdir}/wos_univ_locations.xlsx\")"
]
},
{
"cell_type": "code",
"execution_count": 335,
"id": "1e737dbf",
"metadata": {},
"outputs": [],
"source": [
"record_col = \"UT (Unique WOS ID)\""
]
},
{
"cell_type": "markdown",
"id": "a97f1cbb",
"metadata": {},
"source": [
"# Output - per yer, by Metrix taxonomy"
]
},
{
"cell_type": "code",
"execution_count": 336,
"id": "f39cb21d",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Domain_English</th>\n",
" <th>Field_English</th>\n",
" <th>SubField_English</th>\n",
" <th>UT (Unique WOS ID)</th>\n",
" <th>percent</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>37</th>\n",
" <td>Applied Sciences&lt;br&gt;(29985)</td>\n",
" <td>Information &amp; Communication Technologies&lt;br&gt;(1...</td>\n",
" <td>Artificial Intelligence &amp; Image Processing&lt;br&gt;...</td>\n",
" <td>7915</td>\n",
" <td>17.184108</td>\n",
" </tr>\n",
" <tr>\n",
" <th>44</th>\n",
" <td>Applied Sciences&lt;br&gt;(29985)</td>\n",
" <td>Information &amp; Communication Technologies&lt;br&gt;(2...</td>\n",
" <td>Networking &amp; Telecommunications&lt;br&gt;(303)</td>\n",
" <td>5360</td>\n",
" <td>11.636995</td>\n",
" </tr>\n",
" <tr>\n",
" <th>32</th>\n",
" <td>Applied Sciences&lt;br&gt;(29985)</td>\n",
" <td>Engineering&lt;br&gt;(3940)</td>\n",
" <td>Geological &amp; Geomatics Engineering&lt;br&gt;(436)</td>\n",
" <td>2576</td>\n",
" <td>5.592705</td>\n",
" </tr>\n",
" <tr>\n",
" <th>33</th>\n",
" <td>Applied Sciences&lt;br&gt;(29985)</td>\n",
" <td>Engineering&lt;br&gt;(1226)</td>\n",
" <td>Industrial Engineering &amp; Automation&lt;br&gt;(425)</td>\n",
" <td>2316</td>\n",
" <td>5.028224</td>\n",
" </tr>\n",
" <tr>\n",
" <th>15</th>\n",
" <td>Applied Sciences&lt;br&gt;(29985)</td>\n",
" <td>Enabling &amp; Strategic Technologies&lt;br&gt;(9232)</td>\n",
" <td>Energy&lt;br&gt;(598)</td>\n",
" <td>1965</td>\n",
" <td>4.266175</td>\n",
" </tr>\n",
" <tr>\n",
" <th>...</th>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>11</th>\n",
" <td>Applied Sciences&lt;br&gt;(29985)</td>\n",
" <td>Economics &amp; Business &lt;br&gt;(9232)</td>\n",
" <td>Business &amp; Management&lt;br&gt;(792)</td>\n",
" <td>1</td>\n",
" <td>0.002171</td>\n",
" </tr>\n",
" <tr>\n",
" <th>46</th>\n",
" <td>Applied Sciences&lt;br&gt;(29985)</td>\n",
" <td>Social Sciences&lt;br&gt;(2032)</td>\n",
" <td>Anthropology&lt;br&gt;(285)</td>\n",
" <td>1</td>\n",
" <td>0.002171</td>\n",
" </tr>\n",
" <tr>\n",
" <th>54</th>\n",
" <td>Arts &amp; Humanities&lt;br&gt;(8457)</td>\n",
" <td>Philosophy &amp; Theology&lt;br&gt;(3385)</td>\n",
" <td>Philosophy&lt;br&gt;(208)</td>\n",
" <td>1</td>\n",
" <td>0.002171</td>\n",
" </tr>\n",
" <tr>\n",
" <th>52</th>\n",
" <td>Arts &amp; Humanities&lt;br&gt;(8457)</td>\n",
" <td>Historical Studies&lt;br&gt;(3385)</td>\n",
" <td>History of Social Sciences&lt;br&gt;(211)</td>\n",
" <td>1</td>\n",
" <td>0.002171</td>\n",
" </tr>\n",
" <tr>\n",
" <th>129</th>\n",
" <td>Health Sciences&lt;br&gt;(5341)</td>\n",
" <td>Psychology &amp; Cognitive Sciences&lt;br&gt;(1067)</td>\n",
" <td>General Psychology &amp; Cognitive Sciences&lt;br&gt;(19)</td>\n",
" <td>1</td>\n",
" <td>0.002171</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"<p>175 rows × 5 columns</p>\n",
"</div>"
],
"text/plain": [
" Domain_English \n",
"37 Applied Sciences<br>(29985) \\\n",
"44 Applied Sciences<br>(29985) \n",
"32 Applied Sciences<br>(29985) \n",
"33 Applied Sciences<br>(29985) \n",
"15 Applied Sciences<br>(29985) \n",
".. ... \n",
"11 Applied Sciences<br>(29985) \n",
"46 Applied Sciences<br>(29985) \n",
"54 Arts & Humanities<br>(8457) \n",
"52 Arts & Humanities<br>(8457) \n",
"129 Health Sciences<br>(5341) \n",
"\n",
" Field_English \n",
"37 Information & Communication Technologies<br>(1... \\\n",
"44 Information & Communication Technologies<br>(2... \n",
"32 Engineering<br>(3940) \n",
"33 Engineering<br>(1226) \n",
"15 Enabling & Strategic Technologies<br>(9232) \n",
".. ... \n",
"11 Economics & Business <br>(9232) \n",
"46 Social Sciences<br>(2032) \n",
"54 Philosophy & Theology<br>(3385) \n",
"52 Historical Studies<br>(3385) \n",
"129 Psychology & Cognitive Sciences<br>(1067) \n",
"\n",
" SubField_English UT (Unique WOS ID) \n",
"37 Artificial Intelligence & Image Processing<br>... 7915 \\\n",
"44 Networking & Telecommunications<br>(303) 5360 \n",
"32 Geological & Geomatics Engineering<br>(436) 2576 \n",
"33 Industrial Engineering & Automation<br>(425) 2316 \n",
"15 Energy<br>(598) 1965 \n",
".. ... ... \n",
"11 Business & Management<br>(792) 1 \n",
"46 Anthropology<br>(285) 1 \n",
"54 Philosophy<br>(208) 1 \n",
"52 History of Social Sciences<br>(211) 1 \n",
"129 General Psychology & Cognitive Sciences<br>(19) 1 \n",
"\n",
" percent \n",
"37 17.184108 \n",
"44 11.636995 \n",
"32 5.592705 \n",
"33 5.028224 \n",
"15 4.266175 \n",
".. ... \n",
"11 0.002171 \n",
"46 0.002171 \n",
"54 0.002171 \n",
"52 0.002171 \n",
"129 0.002171 \n",
"\n",
"[175 rows x 5 columns]"
]
},
"execution_count": 336,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# def nth_repl_all(s, sub=\"\", repl=\"<br>\", nth=2):\n",
"# find = s.find(sub)\n",
"# # loop util we find no match\n",
"# i = 1\n",
"# while find != -1:\n",
"# # if i is equal to nth we found nth matches so replace\n",
"# if i == nth:\n",
"# s = s[:find]+repl+s[find + len(sub):]\n",
"# i = 0\n",
"# # find + len(sub) + 1 means we start after the last match\n",
"# find = s.find(sub, find + len(sub) + 1)\n",
"# i += 1\n",
"# return s.replace(\"<br>&\",\"&<br\")\n",
"\n",
"def replace_nth(s, sub=\" \", repl=\"<br>\", n=2):\n",
" chunks = s.split(sub)\n",
" size = len(chunks)\n",
" rows = size // n + (0 if size % n == 0 else 1)\n",
" return (repl.join([\n",
" sub.join([chunks[i * n + j] for j in range(n if (i + 1) * n < size else size - i * n)])\n",
" for i in range(rows)\n",
" ])).replace(\"<br>&\",\" &<br>\")\n",
"\n",
"\n",
"groups = ['Domain_English',\"Field_English\",'SubField_English']\n",
"data = wos.groupby(groups, as_index=False)[record_col].nunique().sort_values(ascending=False, by=record_col)\n",
"data[\"percent\"] = data[record_col]/data[record_col].sum()*100\n",
"\n",
"# data[groups] = data[groups].applymap(replace_nth)\n",
"for c in [\"Domain_English\",\"Field_English\",\"SubField_English\"]:\n",
" data[c] = data[c]+\"<br>(\"+(pd.DataFrame(data[c],columns=[c]).merge(data.groupby(c,as_index=False)[record_col].sum(), on=c)[record_col]).astype(str)+\")\"\n",
"data"
]
},
{
"cell_type": "code",
"execution_count": 337,
"id": "2c9d6d5a",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
" <script type=\"text/javascript\">\n",
" window.PlotlyConfig = {MathJaxConfig: 'local'};\n",
" if (window.MathJax && window.MathJax.Hub && window.MathJax.Hub.Config) {window.MathJax.Hub.Config({SVG: {font: \"STIX-Web\"}});}\n",
" if (typeof require !== 'undefined') {\n",
" require.undef(\"plotly\");\n",
" define('plotly', function(require, exports, module) {\n",
" /**\n",
"* plotly.js v2.20.0\n",
"* Copyright 2012-2023, Plotly, Inc.\n",
"* All rights reserved.\n",
"* Licensed under the MIT license\n",
"*/\n",
"/*! For license information please see plotly.min.js.LICENSE.txt */\n",
"!function(t,e){\"object\"==typeof exports&&\"object\"==typeof module?module.exports=e():\"function\"==typeof define&&define.amd?define([],e):\"object\"==typeof exports?exports.Plotly=e():t.Plotly=e()}(self,(function(){return function(){var t={98847:function(t,e,r){\"use strict\";var n=r(71828),i={\"X,X div\":'direction:ltr;font-family:\"Open Sans\",verdana,arial,sans-serif;margin:0;padding:0;',\"X input,X button\":'font-family:\"Open Sans\",verdana,arial,sans-serif;',\"X input:focus,X button:focus\":\"outline:none;\",\"X a\":\"text-decoration:none;\",\"X a:hover\":\"text-decoration:none;\",\"X .crisp\":\"shape-rendering:crispEdges;\",\"X .user-select-none\":\"-webkit-user-select:none;-moz-user-select:none;-ms-user-select:none;-o-user-select:none;user-select:none;\",\"X svg\":\"overflow:hidden;\",\"X svg a\":\"fill:#447adb;\",\"X svg a:hover\":\"fill:#3c6dc5;\",\"X .main-svg\":\"position:absolute;top:0;left:0;pointer-events:none;\",\"X .main-svg .draglayer\":\"pointer-events:all;\",\"X .cursor-default\":\"cursor:default;\",\"X .cursor-pointer\":\"cursor:pointer;\",\"X .cursor-crosshair\":\"cursor:crosshair;\",\"X .cursor-move\":\"cursor:move;\",\"X .cursor-col-resize\":\"cursor:col-resize;\",\"X .cursor-row-resize\":\"cursor:row-resize;\",\"X .cursor-ns-resize\":\"cursor:ns-resize;\",\"X .cursor-ew-resize\":\"cursor:ew-resize;\",\"X .cursor-sw-resize\":\"cursor:sw-resize;\",\"X .cursor-s-resize\":\"cursor:s-resize;\",\"X .cursor-se-resize\":\"cursor:se-resize;\",\"X .cursor-w-resize\":\"cursor:w-resize;\",\"X .cursor-e-resize\":\"cursor:e-resize;\",\"X .cursor-nw-resize\":\"cursor:nw-resize;\",\"X .cursor-n-resize\":\"cursor:n-resize;\",\"X .cursor-ne-resize\":\"cursor:ne-resize;\",\"X .cursor-grab\":\"cursor:-webkit-grab;cursor:grab;\",\"X .modebar\":\"position:absolute;top:2px;right:2px;\",\"X .ease-bg\":\"-webkit-transition:background-color .3s ease 0s;-moz-transition:background-color .3s ease 0s;-ms-transition:background-color .3s ease 0s;-o-transition:background-color .3s ease 0s;transition:background-color .3s ease 0s;\",\"X .modebar--hover>:not(.watermark)\":\"opacity:0;-webkit-transition:opacity .3s ease 0s;-moz-transition:opacity .3s ease 0s;-ms-transition:opacity .3s ease 0s;-o-transition:opacity .3s ease 0s;transition:opacity .3s ease 0s;\",\"X:hover .modebar--hover .modebar-group\":\"opacity:1;\",\"X .modebar-group\":\"float:left;display:inline-block;box-sizing:border-box;padding-left:8px;position:relative;vertical-align:middle;white-space:nowrap;\",\"X .modebar-btn\":\"position:relative;font-size:16px;padding:3px 4px;height:22px;cursor:pointer;line-height:normal;box-sizing:border-box;\",\"X .modebar-btn svg\":\"position:relative;top:2px;\",\"X .modebar.vertical\":\"display:flex;flex-direction:column;flex-wrap:wrap;align-content:flex-end;max-height:100%;\",\"X .modebar.vertical svg\":\"top:-1px;\",\"X .modebar.vertical .modebar-group\":\"display:block;float:none;padding-left:0px;padding-bottom:8px;\",\"X .modebar.vertical .modebar-group .modebar-btn\":\"display:block;text-align:center;\",\"X [data-title]:before,X [data-title]:after\":\"position:absolute;-webkit-transform:translate3d(0, 0, 0);-moz-transform:translate3d(0, 0, 0);-ms-transform:translate3d(0, 0, 0);-o-transform:translate3d(0, 0, 0);transform:translate3d(0, 0, 0);display:none;opacity:0;z-index:1001;pointer-events:none;top:110%;right:50%;\",\"X [data-title]:hover:before,X [data-title]:hover:after\":\"display:block;opacity:1;\",\"X [data-title]:before\":'content:\"\";position:absolute;background:rgba(0,0,0,0);border:6px solid rgba(0,0,0,0);z-index:1002;margin-top:-12px;border-bottom-color:#69738a;margin-right:-6px;',\"X [data-title]:after\":\"content:attr(data-title);background:#69738a;color:#fff;padding:8px 10px;font-size:12px;line-height:12px;white-space:nowrap;margin-right:-18px;border-radius:2px;\",\"X .vertical [data-title]:before,X .vertical [data-title]:after\":\"top:0%;right:200%;\",\"X .vertical [data-title]:before\":\"border:6px solid rgba(0,0,0,0);border-left-color:#69738a;margin-top:8px;margin-right:-30px;\",Y:'font-family:\"Open
" });\n",
" require(['plotly'], function(Plotly) {\n",
" window._Plotly = Plotly;\n",
" });\n",
" }\n",
" </script>\n",
" "
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.plotly.v1+json": {
"config": {
"displayModeBar": false,
"plotlyServerURL": "https://plot.ly"
},
"data": [
{
"branchvalues": "total",
"customdata": [
[
"Economic & Social Sciences<br>(8457)"
],
[
"Applied Sciences<br>(29985)"
],
[
"Health Sciences<br>(5341)"
],
[
"Arts & Humanities<br>(8457)"
],
[
"Health Sciences<br>(5341)"
],
[
"Applied Sciences<br>(29985)"
],
[
"Applied Sciences<br>(29985)"
],
[
"Economic & Social Sciences<br>(8457)"
],
[
"Health Sciences<br>(5341)"
],
[
"Economic & Social Sciences<br>(8457)"
],
[
"Health Sciences<br>(5341)"
],
[
"Health Sciences<br>(5341)"
],
[
"Economic & Social Sciences<br>(8457)"
],
[
"Economic & Social Sciences<br>(8457)"
],
[
"Health Sciences<br>(5341)"
],
[
"Health Sciences<br>(5341)"
],
[
"Natural Sciences<br>(1360)"
],
[
"Health Sciences<br>(5341)"
],
[
"Health Sciences<br>(5341)"
],
[
"Economic & Social Sciences<br>(8457)"
],
[
"Natural Sciences<br>(1360)"
],
[
"Multidisciplinary<br>(5341)"
],
[
"Applied Sciences<br>(29985)"
],
[
"Economic & Social Sciences<br>(8457)"
],
[
"Economic & Social Sciences<br>(8457)"
],
[
"Health Sciences<br>(5341)"
],
[
"Applied Sciences<br>(29985)"
],
[
"Economic & Social Sciences<br>(8457)"
],
[
"Applied Sciences<br>(29985)"
],
[
"Health Sciences<br>(5341)"
],
[
"Arts & Humanities<br>(8457)"
],
[
"Natural Sciences<br>(1360)"
],
[
"Health Sciences<br>(5341)"
],
[
"Arts & Humanities<br>(8457)"
],
[
"Applied Sciences<br>(29985)"
],
[
"Health Sciences<br>(5341)"
],
[
"Applied Sciences<br>(29985)"
],
[
"Applied Sciences<br>(29985)"
],
[
"Health Sciences<br>(5341)"
],
[
"Applied Sciences<br>(29985)"
],
[
"Natural Sciences<br>(1360)"
],
[
"Applied Sciences<br>(29985)"
],
[
"Economic & Social Sciences<br>(8457)"
],
[
"Health Sciences<br>(5341)"
],
[
"Applied Sciences<br>(29985)"
],
[
"Health Sciences<br>(5341)"
],
[
"Applied Sciences<br>(29985)"
],
[
"Economic & Social Sciences<br>(8457)"
],
[
"Applied Sciences<br>(29985)"
],
[
"Health Sciences<br>(5341)"
],
[
"Natural Sciences<br>(1360)"
],
[
"Natural Sciences<br>(1360)"
],
[
"Health Sciences<br>(5341)"
],
[
"Health Sciences<br>(5341)"
],
[
"Health Sciences<br>(5341)"
],
[
"Economic & Social Sciences<br>(8457)"
],
[
"Health Sciences<br>(5341)"
],
[
"Health Sciences<br>(5341)"
],
[
"Natural Sciences<br>(1360)"
],
[
"Natural Sciences<br>(70)"
],
[
"Economic & Social Sciences<br>(8457)"
],
[
"Applied Sciences<br>(29985)"
],
[
"Health Sciences<br>(5341)"
],
[
"Health Sciences<br>(5341)"
],
[
"Natural Sciences<br>(1360)"
],
[
"Applied Sciences<br>(29985)"
],
[
"Health Sciences<br>(5341)"
],
[
"Economic & Social Sciences<br>(8457)"
],
[
"Health Sciences<br>(5341)"
],
[
"Economic & Social Sciences<br>(8457)"
],
[
"Economic & Social Sciences<br>(8457)"
],
[
"Natural Sciences<br>(1360)"
],
[
"Health Sciences<br>(5341)"
],
[
"Health Sciences<br>(5341)"
],
[
"Health Sciences<br>(5341)"
],
[
"Health Sciences<br>(5341)"
],
[
"Natural Sciences<br>(1360)"
],
[
"Applied Sciences<br>(29985)"
],
[
"Health Sciences<br>(5341)"
],
[
"Applied Sciences<br>(29985)"
],
[
"Health Sciences<br>(5341)"
],
[
"Natural Sciences<br>(70)"
],
[
"Applied Sciences<br>(29985)"
],
[
"Applied Sciences<br>(29985)"
],
[
"Natural Sciences<br>(70)"
],
[
"Natural Sciences<br>(1360)"
],
[
"Applied Sciences<br>(29985)"
],
[
"Applied Sciences<br>(29985)"
],
[
"Natural Sciences<br>(1360)"
],
[
"Natural Sciences<br>(1360)"
],
[
"Health Sciences<br>(5341)"
],
[
"Applied Sciences<br>(29985)"
],
[
"Natural Sciences<br>(70)"
],
[
"Health Sciences<br>(5341)"
],
[
"Applied Sciences<br>(29985)"
],
[
"Health Sciences<br>(5341)"
],
[
"Health Sciences<br>(5341)"
],
[
"Applied Sciences<br>(29985)"
],
[
"Applied Sciences<br>(29985)"
],
[
"Health Sciences<br>(5341)"
],
[
"Applied Sciences<br>(29985)"
],
[
"Natural Sciences<br>(1360)"
],
[
"Health Sciences<br>(5341)"
],
[
"Natural Sciences<br>(1360)"
],
[
"Health Sciences<br>(5341)"
],
[
"Applied Sciences<br>(29985)"
],
[
"Natural Sciences<br>(1360)"
],
[
"Health Sciences<br>(5341)"
],
[
"Applied Sciences<br>(29985)"
],
[
"Applied Sciences<br>(29985)"
],
[
"Applied Sciences<br>(29985)"
],
[
"Health Sciences<br>(5341)"
],
[
"Applied Sciences<br>(29985)"
],
[
"Applied Sciences<br>(29985)"
],
[
"Applied Sciences<br>(29985)"
],
[
"Economic & Social Sciences<br>(8457)"
],
[
"Economic & Social Sciences<br>(8457)"
],
[
"Natural Sciences<br>(1360)"
],
[
"Applied Sciences<br>(29985)"
],
[
"Health Sciences<br>(5341)"
],
[
"Applied Sciences<br>(29985)"
],
[
"Economic & Social Sciences<br>(8457)"
],
[
"Health Sciences<br>(5341)"
],
[
"Health Sciences<br>(5341)"
],
[
"Natural Sciences<br>(1360)"
],
[
"Health Sciences<br>(5341)"
],
[
"Applied Sciences<br>(29985)"
],
[
"Arts & Humanities<br>(8457)"
],
[
"Natural Sciences<br>(1360)"
],
[
"Applied Sciences<br>(29985)"
],
[
"Arts & Humanities<br>(8457)"
],
[
"Health Sciences<br>(5341)"
],
[
"Health Sciences<br>(5341)"
],
[
"Applied Sciences<br>(29985)"
],
[
"Health Sciences<br>(5341)"
],
[
"Arts & Humanities<br>(8457)"
],
[
"Health Sciences<br>(5341)"
],
[
"Applied Sciences<br>(29985)"
],
[
"Applied Sciences<br>(29985)"
],
[
"Natural Sciences<br>(1360)"
],
[
"Health Sciences<br>(847)"
],
[
"Applied Sciences<br>(29985)"
],
[
"Natural Sciences<br>(70)"
],
[
"Health Sciences<br>(5341)"
],
[
"Applied Sciences<br>(29985)"
],
[
"Health Sciences<br>(5341)"
],
[
"Health Sciences<br>(5341)"
],
[
"Natural Sciences<br>(1360)"
],
[
"Economic & Social Sciences<br>(8457)"
],
[
"Health Sciences<br>(5341)"
],
[
"Applied Sciences<br>(29985)"
],
[
"Natural Sciences<br>(1360)"
],
[
"Natural Sciences<br>(1360)"
],
[
"Health Sciences<br>(5341)"
],
[
"Arts & Humanities<br>(8457)"
],
[
"Economic & Social Sciences<br>(8457)"
],
[
"Economic & Social Sciences<br>(8457)"
],
[
"Natural Sciences<br>(1360)"
],
[
"Health Sciences<br>(5341)"
],
[
"Natural Sciences<br>(1360)"
],
[
"Economic & Social Sciences<br>(8457)"
],
[
"Applied Sciences<br>(29985)"
],
[
"Natural Sciences<br>(70)"
],
[
"Economic & Social Sciences<br>(8457)"
],
[
"Natural Sciences<br>(1360)"
],
[
"Applied Sciences<br>(29985)"
],
[
"Arts & Humanities<br>(8457)"
],
[
"Health Sciences<br>(5341)"
],
[
"Natural Sciences<br>(70)"
],
[
"Health Sciences<br>(5341)"
],
[
"Economic & Social Sciences<br>(8457)"
],
[
"Health Sciences<br>(5341)"
],
[
"Applied Sciences<br>(29985)"
],
[
"Natural Sciences<br>(70)"
],
[
"Economic & Social Sciences<br>(8457)"
],
[
"Applied Sciences<br>(29985)"
],
[
"Natural Sciences<br>(1360)"
],
[
"Natural Sciences<br>(1360)"
],
[
"Health Sciences<br>(5341)"
],
[
"Health Sciences<br>(5341)"
],
[
"Health Sciences<br>(847)"
],
[
"Applied Sciences<br>(29985)"
],
[
"Applied Sciences<br>(29985)"
],
[
"Natural Sciences<br>(1360)"
],
[
"Natural Sciences<br>(1360)"
],
[
"Health Sciences<br>(5341)"
],
[
"Health Sciences<br>(5341)"
],
[
"Health Sciences<br>(5341)"
],
[
"Health Sciences<br>(5341)"
],
[
"Health Sciences<br>(5341)"
],
[
"Arts & Humanities<br>(8457)"
],
[
"Natural Sciences<br>(1360)"
],
[
"Economic & Social Sciences<br>(8457)"
],
[
"Applied Sciences<br>(29985)"
],
[
"Applied Sciences<br>(29985)"
],
[
"Applied Sciences<br>(29985)"
],
[
"Applied Sciences<br>(29985)"
],
[
"Arts & Humanities<br>(8457)"
],
[
"Applied Sciences<br>(29985)"
],
[
"Applied Sciences<br>(29985)"
],
[
"Applied Sciences<br>(29985)"
],
[
"Natural Sciences<br>(1360)"
],
[
"Multidisciplinary<br>(5341)"
],
[
"Arts & Humanities<br>(8457)"
],
[
"Natural Sciences<br>(70)"
],
[
"Natural Sciences<br>(70)"
],
[
"Natural Sciences<br>(70)"
],
[
"Natural Sciences<br>(1360)"
],
[
"Health Sciences<br>(5341)"
],
[
"Health Sciences<br>(5341)"
],
[
"Health Sciences<br>(5341)"
],
[
"Health Sciences<br>(5341)"
],
[
"Applied Sciences<br>(29985)"
],
[
"Economic & Social Sciences<br>(8457)"
],
[
"Economic & Social Sciences<br>(8457)"
],
[
"Applied Sciences<br>(29985)"
],
[
"Arts & Humanities<br>(8457)"
],
[
"Economic & Social Sciences<br>(8457)"
],
[
"Health Sciences<br>(5341)"
],
[
"Health Sciences<br>(847)"
],
[
"Multidisciplinary<br>(5341)"
],
[
"Natural Sciences<br>(1360)"
],
[
"Natural Sciences<br>(70)"
]
],
"domain": {
"x": [
0,
1
],
"y": [
0,
1
]
},
"hovertemplate": "%{label}<br>%{value:.2f}%",
"ids": [
"Economic & Social Sciences<br>(8457)/Economics & Business <br>(3385)/Accounting<br>(201)",
"Applied Sciences<br>(29985)/Engineering<br>(3940)/Civil Engineering<br>(471)",
"Health Sciences<br>(5341)/Psychology & Cognitive Sciences<br>(612)/Social Psychology<br>(18)",
"Arts & Humanities<br>(8457)/Communication & Textual Studies<br>(3385)/Communication & Media Studies<br>(270)",
"Health Sciences<br>(5341)/Clinical Medicine<br>(1049)/Complementary & Alternative Medicine<br>(56)",
"Applied Sciences<br>(29985)/Engineering<br>(3940)/Computation Theory & Mathematics<br>(450)",
"Applied Sciences<br>(29985)/Information & Communication Technologies<br>(1226)/Computer Hardware & Architecture<br>(378)",
"Economic & Social Sciences<br>(8457)/Social Sciences<br>(3385)/Demography<br>(118)",
"Health Sciences<br>(5341)/Clinical Medicine<br>(1067)/Pharmacology & Pharmacy<br>(24)",
"Economic & Social Sciences<br>(8457)/Economics & Business <br>(3385)/Development Studies<br>(185)",
"Health Sciences<br>(5341)/Psychology & Cognitive Sciences<br>(1067)/Developmental & Child Psychology<br>(19)",
"Health Sciences<br>(5341)/Clinical Medicine<br>(537)/Pediatrics<br>(25)",
"Economic & Social Sciences<br>(8457)/Social Sciences<br>(3112)/Social Work<br>(82)",
"Economic & Social Sciences<br>(8457)/Economics & Business <br>(3385)/Economic Theory<br>(160)",
"Health Sciences<br>(5341)/Clinical Medicine<br>(1049)/Endocrinology & Metabolism<br>(52)",
"Health Sciences<br>(5341)/Clinical Medicine<br>(814)/Ophthalmology & Optometry<br>(34)",
"Natural Sciences<br>(1360)/Earth & Environmental Sciences<br>(327)/Environmental Sciences<br>(6)",
"Health Sciences<br>(5341)/Clinical Medicine<br>(814)/Oncology & Carcinogenesis<br>(36)",
"Health Sciences<br>(5341)/Psychology & Cognitive Sciences<br>(1067)/Experimental Psychology<br>(19)",
"Economic & Social Sciences<br>(8457)/Economics & Business <br>(3385)/Finance<br>(153)",
"Natural Sciences<br>(1360)/Mathematics & Statistics<br>(327)/Fluids & Plasmas<br>(4)",
"Multidisciplinary<br>(5341)/Multidisciplinary<br>(415)/Multidisciplinary<br>(13)",
"Applied Sciences<br>(29985)/Engineering<br>(1226)/Mechanical Engineering & Transports<br>(425)",
"Economic & Social Sciences<br>(8457)/Social Sciences<br>(3385)/International Relations<br>(109)",
"Economic & Social Sciences<br>(8457)/Social Sciences<br>(3385)/Law<br>(92)",
"Health Sciences<br>(5341)/Clinical Medicine<br>(1049)/Emergency & Critical Care Medicine<br>(53)",
"Applied Sciences<br>(29985)/Economics & Business <br>(9232)/Business & Management<br>(792)",
"Economic & Social Sciences<br>(8457)/Economics & Business <br>(3385)/Econometrics<br>(175)",
"Applied Sciences<br>(29985)/Built Environment & Design<br>(9232)/Urban & Regional Planning<br>(847)",
"Health Sciences<br>(5341)/Clinical Medicine<br>(1067)/Urology & Nephrology<br>(20)",
"Arts & Humanities<br>(8457)/Philosophy & Theology<br>(3385)/Applied Ethics<br>(209)",
"Natural Sciences<br>(1360)/Mathematics & Statistics<br>(327)/Applied Mathematics<br>(4)",
"Health Sciences<br>(5341)/Clinical Medicine<br>(1049)/Allergy<br>(60)",
"Arts & Humanities<br>(8457)/Historical Studies<br>(3385)/Archaeology<br>(219)",
"Applied Sciences<br>(29985)/Built Environment & Design<br>(15648)/Architecture<br>(1553)",
"Health Sciences<br>(5341)/Clinical Medicine<br>(1049)/Arthritis & Rheumatology<br>(58)",
"Applied Sciences<br>(29985)/Built Environment & Design<br>(15648)/Building & Construction<br>(1553)",
"Applied Sciences<br>(29985)/Enabling & Strategic Technologies<br>(9232)/Strategic, Defence & Security Studies<br>(519)",
"Health Sciences<br>(5341)/Clinical Medicine<br>(1067)/Tropical Medicine<br>(22)",
"Applied Sciences<br>(29985)/Enabling & Strategic Technologies<br>(9232)/Biotechnology<br>(632)",
"Natural Sciences<br>(1360)/Physics & Astronomy<br>(327)/Acoustics<br>(2)",
"Applied Sciences<br>(29985)/Engineering<br>(3940)/Aerospace & Aeronautics<br>(512)",
"Economic & Social Sciences<br>(8457)/Economics & Business <br>(3385)/Agricultural Economics & Policy<br>(186)",
"Health Sciences<br>(5341)/Psychology & Cognitive Sciences<br>(1067)/Behavioral Science & Comparative Psychology<br>(19)",
"Applied Sciences<br>(29985)/Agriculture, Fisheries & Forestry<br>(15648)/Agronomy & Agriculture<br>(7927)",
"Health Sciences<br>(5341)/Clinical Medicine<br>(1067)/Sport Sciences<br>(23)",
"Applied Sciences<br>(29985)/Engineering<br>(3940)/Automobile Design & Engineering<br>(480)",
"Economic & Social Sciences<br>(8457)/Social Sciences<br>(3385)/Science Studies<br>(86)",
"Applied Sciences<br>(29985)/Agriculture, Fisheries & Forestry<br>(15648)/Veterinary Sciences<br>(1965)",
"Health Sciences<br>(5341)/Clinical Medicine<br>(537)/Orthopedics<br>(33)",
"Natural Sciences<br>(1360)/Earth & Environmental Sciences<br>(327)/Oceanography<br>(5)",
"Natural Sciences<br>(1360)/Earth & Environmental Sciences<br>(327)/Paleontology<br>(5)",
"Health Sciences<br>(5341)/Biomedical Research<br>(3112)/Microbiology<br>(72)",
"Health Sciences<br>(5341)/Biomedical Research<br>(1049)/Virology<br>(61)",
"Health Sciences<br>(5341)/Clinical Medicine<br>(537)/Pathology<br>(27)",
"Economic & Social Sciences<br>(8457)/Social Sciences<br>(3385)/Gender Studies<br>(124)",
"Health Sciences<br>(5341)/Biomedical Research<br>(1049)/Nutrition & Dietetics<br>(69)",
"Health Sciences<br>(5341)/Psychology & Cognitive Sciences<br>(1067)/General Psychology & Cognitive Sciences<br>(19)",
"Natural Sciences<br>(1360)/Earth & Environmental Sciences<br>(327)/Geochemistry & Geophysics<br>(6)",
"Natural Sciences<br>(70)/Physics & Astronomy<br>(29)/Fluids & Plasmas<br>(2)",
"Economic & Social Sciences<br>(8457)/Social Sciences<br>(3385)/Geography<br>(124)",
"Applied Sciences<br>(29985)/Agriculture, Fisheries & Forestry<br>(15648)/Fisheries<br>(5363)",
"Health Sciences<br>(5341)/Clinical Medicine<br>(1273)/Geriatrics<br>(41)",
"Health Sciences<br>(5341)/Public Health & Health Services<br>(612)/Gerontology<br>(17)",
"Natural Sciences<br>(1360)/Mathematics & Statistics<br>(327)/General Mathematics<br>(3)",
"Applied Sciences<br>(29985)/Information & Communication Technologies<br>(2032)/Software Engineering<br>(291)",
"Health Sciences<br>(5341)/Biomedical Research<br>(1049)/Toxicology<br>(62)",
"Economic & Social Sciences<br>(8457)/Social Sciences<br>(3112)/Sociology<br>(76)",
"Health Sciences<br>(5341)/Public Health & Health Services<br>(415)/Speech-Language Pathology & Audiology<br>(15)",
"Economic & Social Sciences<br>(8457)/Social Sciences<br>(3385)/Social Sciences Methods<br>(86)",
"Economic & Social Sciences<br>(8457)/Economics & Business <br>(3385)/Sport, Leisure & Tourism<br>(133)",
"Natural Sciences<br>(1360)/Mathematics & Statistics<br>(327)/Statistics & Probability<br>(3)",
"Health Sciences<br>(5341)/Clinical Medicine<br>(1067)/Respiratory System<br>(24)",
"Health Sciences<br>(5341)/Public Health & Health Services<br>(415)/Rehabilitation<br>(15)",
"Health Sciences<br>(5341)/Clinical Medicine<br>(1067)/Psychiatry<br>(24)",
"Health Sciences<br>(5341)/Biomedical Research<br>(1049)/Physiology<br>(66)",
"Natural Sciences<br>(1360)/Chemistry<br>(327)/Physical Chemistry<br>(8)",
"Applied Sciences<br>(29985)/Information & Communication Technologies<br>(1226)/Artificial Intelligence & Image Processing<br>(397)",
"Health Sciences<br>(5341)/Public Health & Health Services<br>(415)/Substance Abuse<br>(14)",
"Applied Sciences<br>(29985)/Information & Communication Technologies<br>(2032)/Electrical & Electronic Engineering<br>(327)",
"Health Sciences<br>(5341)/Clinical Medicine<br>(1067)/Surgery<br>(22)",
"Natural Sciences<br>(70)/Physics & Astronomy<br>(11)/Optics<br>(1)",
"Applied Sciences<br>(29985)/Enabling & Strategic Technologies<br>(9232)/Materials<br>(560)",
"Applied Sciences<br>(29985)/Enabling & Strategic Technologies<br>(9232)/Optoelectronics & Photonics<br>(537)",
"Natural Sciences<br>(70)/Physics & Astronomy<br>(29)/Mathematical Physics<br>(1)",
"Natural Sciences<br>(1360)/Chemistry<br>(327)/Organic Chemistry<br>(8)",
"Applied Sciences<br>(29985)/Enabling & Strategic Technologies<br>(9232)/Mechanical Engineering & Transports<br>(551)",
"Applied Sciences<br>(29985)/Information & Communication Technologies<br>(2032)/Medical Informatics<br>(310)",
"Natural Sciences<br>(1360)/Earth & Environmental Sciences<br>(327)/Meteorology & Atmospheric Sciences<br>(4)",
"Natural Sciences<br>(1360)/Biology<br>(474)/Ornithology<br>(10)",
"Health Sciences<br>(5341)/Biomedical Research<br>(3112)/Microscopy<br>(71)",
"Applied Sciences<br>(29985)/Engineering<br>(1226)/Mining & Metallurgy<br>(425)",
"Natural Sciences<br>(70)/Physics & Astronomy<br>(11)/Nuclear & Particle Physics<br>(1)",
"Health Sciences<br>(5341)/Biomedical Research<br>(1049)/Mycology & Parasitology<br>(69)",
"Applied Sciences<br>(29985)/Enabling & Strategic Technologies<br>(9232)/Nanoscience & Nanotechnology<br>(533)",
"Health Sciences<br>(5341)/Clinical Medicine<br>(537)/Otorhinolaryngology<br>(29)",
"Health Sciences<br>(5341)/Clinical Medicine<br>(814)/Obstetrics & Reproductive Medicine<br>(36)",
"Applied Sciences<br>(29985)/Information & Communication Technologies<br>(2032)/Networking & Telecommunications<br>(303)",
"Applied Sciences<br>(29985)/Engineering<br>(1226)/Operations Research<br>(402)",
"Health Sciences<br>(5341)/Public Health & Health Services<br>(612)/Nursing<br>(16)",
"Applied Sciences<br>(29985)/Enabling & Strategic Technologies<br>(9232)/Networking & Telecommunications<br>(537)",
"Natural Sciences<br>(1360)/Biology<br>(474)/Marine Biology & Hydrobiology<br>(11)",
"Health Sciences<br>(5341)/Clinical Medicine<br>(814)/Neurology & Neurosurgery<br>(37)",
"Natural Sciences<br>(1360)/Mathematics & Statistics<br>(327)/Numerical & Computational Mathematics<br>(3)",
"Health Sciences<br>(5341)/Clinical Medicine<br>(814)/Nuclear Medicine & Medical Imaging<br>(37)",
"Applied Sciences<br>(29985)/Economics & Business <br>(9232)/Logistics & Transportation<br>(723)",
"Natural Sciences<br>(1360)/Biology<br>(474)/Zoology<br>(10)",
"Health Sciences<br>(5341)/Clinical Medicine<br>(814)/Legal & Forensic Medicine<br>(40)",
"Applied Sciences<br>(29985)/Agriculture, Fisheries & Forestry<br>(15648)/Dairy & Animal Science<br>(7927)",
"Applied Sciences<br>(29985)/Agriculture, Fisheries & Forestry<br>(15648)/Food Science<br>(5363)",
"Applied Sciences<br>(29985)/Enabling & Strategic Technologies<br>(9232)/Fluids & Plasmas<br>(569)",
"Health Sciences<br>(5341)/Public Health & Health Services<br>(612)/Epidemiology<br>(17)",
"Applied Sciences<br>(29985)/Engineering<br>(3940)/Environmental Engineering<br>(439)",
"Applied Sciences<br>(29985)/Enabling & Strategic Technologies<br>(9232)/Energy<br>(598)",
"Applied Sciences<br>(29985)/Information & Communication Technologies<br>(1226)/Computation Theory & Mathematics<br>(389)",
"Economic & Social Sciences<br>(8457)/Social Sciences<br>(3385)/Education<br>(117)",
"Economic & Social Sciences<br>(8457)/Economics & Business <br>(3385)/Logistics & Transportation<br>(140)",
"Natural Sciences<br>(1360)/Biology<br>(415)/Ecology<br>(12)",
"Applied Sciences<br>(29985)/Information & Communication Technologies<br>(847)/Distributed Computing<br>(349)",
"Health Sciences<br>(5341)/Biomedical Research<br>(3112)/Developmental Biology<br>(74)",
"Applied Sciences<br>(29985)/Built Environment & Design<br>(9232)/Design Practice & Management<br>(896)",
"Economic & Social Sciences<br>(8457)/Social Sciences<br>(3385)/Criminology<br>(128)",
"Health Sciences<br>(5341)/Clinical Medicine<br>(1049)/Dermatology & Venereal Diseases<br>(55)",
"Health Sciences<br>(5341)/Clinical Medicine<br>(1273)/General & Internal Medicine<br>(46)",
"Natural Sciences<br>(1360)/Chemistry<br>(474)/General Chemistry<br>(9)",
"Health Sciences<br>(5341)/Clinical Medicine<br>(1273)/Gastroenterology & Hepatology<br>(46)",
"Applied Sciences<br>(29985)/Engineering<br>(3940)/Biomedical Engineering<br>(480)",
"Arts & Humanities<br>(8457)/Communication & Textual Studies<br>(3385)/Languages & Linguistics<br>(225)",
"Natural Sciences<br>(1360)/Chemistry<br>(474)/Inorganic & Nuclear Chemistry<br>(9)",
"Applied Sciences<br>(29985)/Information & Communication Technologies<br>(2032)/Information Systems<br>(314)",
"Arts & Humanities<br>(8457)/Historical Studies<br>(3385)/Anthropology<br>(223)",
"Health Sciences<br>(5341)/Clinical Medicine<br>(1273)/General Clinical Medicine<br>(45)",
"Health Sciences<br>(5341)/Psychology & Cognitive Sciences<br>(612)/Human Factors<br>(18)",
"Applied Sciences<br>(29985)/Agriculture, Fisheries & Forestry<br>(15648)/Horticulture<br>(2316)",
"Health Sciences<br>(5341)/Clinical Medicine<br>(814)/Immunology<br>(40)",
"Arts & Humanities<br>(8457)/Historical Studies<br>(3385)/History of Social Sciences<br>(211)",
"Health Sciences<br>(5341)/Public Health & Health Services<br>(612)/Health Policy & Services<br>(17)",
"Applied Sciences<br>(29985)/Engineering<br>(3940)/Geological & Geomatics Engineering<br>(436)",
"Applied Sciences<br>(29985)/Enabling & Strategic Technologies<br>(9232)/Bioinformatics<br>(711)",
"Natural Sciences<br>(1360)/Chemistry<br>(327)/Polymers<br>(8)",
"Health Sciences<br>(847)/Biomedical Research<br>(3112)/Anatomy & Morphology<br>(76)",
"Applied Sciences<br>(29985)/Engineering<br>(3940)/Chemical Engineering<br>(475)",
"Natural Sciences<br>(70)/Physics & Astronomy<br>(29)/Chemical Physics<br>(2)",
"Health Sciences<br>(5341)/Clinical Medicine<br>(1049)/Cardiovascular System & Hematology<br>(58)",
"Applied Sciences<br>(29985)/Social Sciences<br>(2032)/Anthropology<br>(285)",
"Health Sciences<br>(5341)/Clinical Medicine<br>(1049)/Anesthesiology<br>(59)",
"Health Sciences<br>(5341)/Biomedical Research<br>(3112)/Biophysics<br>(74)",
"Natural Sciences<br>(1360)/Chemistry<br>(474)/Analytical Chemistry<br>(10)",
"Economic & Social Sciences<br>(8457)/Social Sciences<br>(3385)/Cultural Studies<br>(127)",
"Health Sciences<br>(5341)/Public Health & Health Services<br>(612)/Public Health<br>(16)",
"Applied Sciences<br>(29985)/Engineering<br>(3940)/Artificial Intelligence & Image Processing<br>(494)",
"Natural Sciences<br>(1360)/Earth & Environmental Sciences<br>(327)/Geology<br>(5)",
"Natural Sciences<br>(1360)/Biology<br>(474)/Plant Biology & Botany<br>(10)",
"Health Sciences<br>(5341)/Clinical Medicine<br>(1049)/Dentistry<br>(56)",
"Arts & Humanities<br>(8457)/Philosophy & Theology<br>(3385)/Philosophy<br>(208)",
"Economic & Social Sciences<br>(8457)/Economics & Business <br>(3385)/Marketing<br>(138)",
"Economic & Social Sciences<br>(8457)/Social Sciences<br>(3385)/Information & Library Sciences<br>(111)",
"Natural Sciences<br>(1360)/Biology<br>(415)/Entomology<br>(12)",
"Health Sciences<br>(5341)/Clinical Medicine<br>(1273)/Environmental & Occupational Health<br>(47)",
"Natural Sciences<br>(1360)/Biology<br>(415)/Evolutionary Biology<br>(12)",
"Economic & Social Sciences<br>(8457)/Economics & Business <br>(3385)/Industrial Relations<br>(153)",
"Applied Sciences<br>(29985)/Agriculture, Fisheries & Forestry<br>(15648)/Forestry<br>(2576)",
"Natural Sciences<br>(70)/Physics & Astronomy<br>(29)/General Physics<br>(2)",
"Economic & Social Sciences<br>(8457)/Social Sciences<br>(3385)/Political Science & Public Administration<br>(91)",
"Natural Sciences<br>(1360)/Chemistry<br>(474)/Medicinal & Biomolecular Chemistry<br>(8)",
"Applied Sciences<br>(29985)/Engineering<br>(1226)/Industrial Engineering & Automation<br>(425)",
"Arts & Humanities<br>(8457)/Historical Studies<br>(3385)/History<br>(218)",
"Health Sciences<br>(5341)/Biomedical Research<br>(3112)/Genetics & Heredity<br>(74)",
"Natural Sciences<br>(70)/Physics & Astronomy<br>(30)/Astronomy & Astrophysics<br>(2)",
"Health Sciences<br>(5341)/Biomedical Research<br>(3112)/Biochemistry & Molecular Biology<br>(75)",
"Economic & Social Sciences<br>(8457)/Economics & Business <br>(3385)/Business & Management<br>(186)",
"Health Sciences<br>(5341)/Psychology & Cognitive Sciences<br>(1067)/Clinical Psychology<br>(19)",
"Applied Sciences<br>(29985)/Engineering<br>(3940)/Electrical & Electronic Engineering<br>(448)",
"Natural Sciences<br>(70)/Physics & Astronomy<br>(30)/Applied Physics<br>(2)",
"Economic & Social Sciences<br>(8457)/Economics & Business <br>(3385)/Economics<br>(156)",
"Applied Sciences<br>(29985)/Agriculture, Fisheries & Forestry<br>(15648)",
"Natural Sciences<br>(1360)/Biology<br>(415)",
"Natural Sciences<br>(1360)/Biology<br>(474)",
"Health Sciences<br>(5341)/Biomedical Research<br>(1049)",
"Health Sciences<br>(5341)/Biomedical Research<br>(3112)",
"Health Sciences<br>(847)/Biomedical Research<br>(3112)",
"Applied Sciences<br>(29985)/Built Environment & Design<br>(15648)",
"Applied Sciences<br>(29985)/Built Environment & Design<br>(9232)",
"Natural Sciences<br>(1360)/Chemistry<br>(327)",
"Natural Sciences<br>(1360)/Chemistry<br>(474)",
"Health Sciences<br>(5341)/Clinical Medicine<br>(1049)",
"Health Sciences<br>(5341)/Clinical Medicine<br>(1067)",
"Health Sciences<br>(5341)/Clinical Medicine<br>(1273)",
"Health Sciences<br>(5341)/Clinical Medicine<br>(537)",
"Health Sciences<br>(5341)/Clinical Medicine<br>(814)",
"Arts & Humanities<br>(8457)/Communication & Textual Studies<br>(3385)",
"Natural Sciences<br>(1360)/Earth & Environmental Sciences<br>(327)",
"Economic & Social Sciences<br>(8457)/Economics & Business <br>(3385)",
"Applied Sciences<br>(29985)/Economics & Business <br>(9232)",
"Applied Sciences<br>(29985)/Enabling & Strategic Technologies<br>(9232)",
"Applied Sciences<br>(29985)/Engineering<br>(1226)",
"Applied Sciences<br>(29985)/Engineering<br>(3940)",
"Arts & Humanities<br>(8457)/Historical Studies<br>(3385)",
"Applied Sciences<br>(29985)/Information & Communication Technologies<br>(1226)",
"Applied Sciences<br>(29985)/Information & Communication Technologies<br>(2032)",
"Applied Sciences<br>(29985)/Information & Communication Technologies<br>(847)",
"Natural Sciences<br>(1360)/Mathematics & Statistics<br>(327)",
"Multidisciplinary<br>(5341)/Multidisciplinary<br>(415)",
"Arts & Humanities<br>(8457)/Philosophy & Theology<br>(3385)",
"Natural Sciences<br>(70)/Physics & Astronomy<br>(11)",
"Natural Sciences<br>(70)/Physics & Astronomy<br>(29)",
"Natural Sciences<br>(70)/Physics & Astronomy<br>(30)",
"Natural Sciences<br>(1360)/Physics & Astronomy<br>(327)",
"Health Sciences<br>(5341)/Psychology & Cognitive Sciences<br>(1067)",
"Health Sciences<br>(5341)/Psychology & Cognitive Sciences<br>(612)",
"Health Sciences<br>(5341)/Public Health & Health Services<br>(415)",
"Health Sciences<br>(5341)/Public Health & Health Services<br>(612)",
"Applied Sciences<br>(29985)/Social Sciences<br>(2032)",
"Economic & Social Sciences<br>(8457)/Social Sciences<br>(3112)",
"Economic & Social Sciences<br>(8457)/Social Sciences<br>(3385)",
"Applied Sciences<br>(29985)",
"Arts & Humanities<br>(8457)",
"Economic & Social Sciences<br>(8457)",
"Health Sciences<br>(5341)",
"Health Sciences<br>(847)",
"Multidisciplinary<br>(5341)",
"Natural Sciences<br>(1360)",
"Natural Sciences<br>(70)"
],
"labels": [
"Accounting<br>(201)",
"Civil Engineering<br>(471)",
"Social Psychology<br>(18)",
"Communication & Media Studies<br>(270)",
"Complementary & Alternative Medicine<br>(56)",
"Computation Theory & Mathematics<br>(450)",
"Computer Hardware & Architecture<br>(378)",
"Demography<br>(118)",
"Pharmacology & Pharmacy<br>(24)",
"Development Studies<br>(185)",
"Developmental & Child Psychology<br>(19)",
"Pediatrics<br>(25)",
"Social Work<br>(82)",
"Economic Theory<br>(160)",
"Endocrinology & Metabolism<br>(52)",
"Ophthalmology & Optometry<br>(34)",
"Environmental Sciences<br>(6)",
"Oncology & Carcinogenesis<br>(36)",
"Experimental Psychology<br>(19)",
"Finance<br>(153)",
"Fluids & Plasmas<br>(4)",
"Multidisciplinary<br>(13)",
"Mechanical Engineering & Transports<br>(425)",
"International Relations<br>(109)",
"Law<br>(92)",
"Emergency & Critical Care Medicine<br>(53)",
"Business & Management<br>(792)",
"Econometrics<br>(175)",
"Urban & Regional Planning<br>(847)",
"Urology & Nephrology<br>(20)",
"Applied Ethics<br>(209)",
"Applied Mathematics<br>(4)",
"Allergy<br>(60)",
"Archaeology<br>(219)",
"Architecture<br>(1553)",
"Arthritis & Rheumatology<br>(58)",
"Building & Construction<br>(1553)",
"Strategic, Defence & Security Studies<br>(519)",
"Tropical Medicine<br>(22)",
"Biotechnology<br>(632)",
"Acoustics<br>(2)",
"Aerospace & Aeronautics<br>(512)",
"Agricultural Economics & Policy<br>(186)",
"Behavioral Science & Comparative Psychology<br>(19)",
"Agronomy & Agriculture<br>(7927)",
"Sport Sciences<br>(23)",
"Automobile Design & Engineering<br>(480)",
"Science Studies<br>(86)",
"Veterinary Sciences<br>(1965)",
"Orthopedics<br>(33)",
"Oceanography<br>(5)",
"Paleontology<br>(5)",
"Microbiology<br>(72)",
"Virology<br>(61)",
"Pathology<br>(27)",
"Gender Studies<br>(124)",
"Nutrition & Dietetics<br>(69)",
"General Psychology & Cognitive Sciences<br>(19)",
"Geochemistry & Geophysics<br>(6)",
"Fluids & Plasmas<br>(2)",
"Geography<br>(124)",
"Fisheries<br>(5363)",
"Geriatrics<br>(41)",
"Gerontology<br>(17)",
"General Mathematics<br>(3)",
"Software Engineering<br>(291)",
"Toxicology<br>(62)",
"Sociology<br>(76)",
"Speech-Language Pathology & Audiology<br>(15)",
"Social Sciences Methods<br>(86)",
"Sport, Leisure & Tourism<br>(133)",
"Statistics & Probability<br>(3)",
"Respiratory System<br>(24)",
"Rehabilitation<br>(15)",
"Psychiatry<br>(24)",
"Physiology<br>(66)",
"Physical Chemistry<br>(8)",
"Artificial Intelligence & Image Processing<br>(397)",
"Substance Abuse<br>(14)",
"Electrical & Electronic Engineering<br>(327)",
"Surgery<br>(22)",
"Optics<br>(1)",
"Materials<br>(560)",
"Optoelectronics & Photonics<br>(537)",
"Mathematical Physics<br>(1)",
"Organic Chemistry<br>(8)",
"Mechanical Engineering & Transports<br>(551)",
"Medical Informatics<br>(310)",
"Meteorology & Atmospheric Sciences<br>(4)",
"Ornithology<br>(10)",
"Microscopy<br>(71)",
"Mining & Metallurgy<br>(425)",
"Nuclear & Particle Physics<br>(1)",
"Mycology & Parasitology<br>(69)",
"Nanoscience & Nanotechnology<br>(533)",
"Otorhinolaryngology<br>(29)",
"Obstetrics & Reproductive Medicine<br>(36)",
"Networking & Telecommunications<br>(303)",
"Operations Research<br>(402)",
"Nursing<br>(16)",
"Networking & Telecommunications<br>(537)",
"Marine Biology & Hydrobiology<br>(11)",
"Neurology & Neurosurgery<br>(37)",
"Numerical & Computational Mathematics<br>(3)",
"Nuclear Medicine & Medical Imaging<br>(37)",
"Logistics & Transportation<br>(723)",
"Zoology<br>(10)",
"Legal & Forensic Medicine<br>(40)",
"Dairy & Animal Science<br>(7927)",
"Food Science<br>(5363)",
"Fluids & Plasmas<br>(569)",
"Epidemiology<br>(17)",
"Environmental Engineering<br>(439)",
"Energy<br>(598)",
"Computation Theory & Mathematics<br>(389)",
"Education<br>(117)",
"Logistics & Transportation<br>(140)",
"Ecology<br>(12)",
"Distributed Computing<br>(349)",
"Developmental Biology<br>(74)",
"Design Practice & Management<br>(896)",
"Criminology<br>(128)",
"Dermatology & Venereal Diseases<br>(55)",
"General & Internal Medicine<br>(46)",
"General Chemistry<br>(9)",
"Gastroenterology & Hepatology<br>(46)",
"Biomedical Engineering<br>(480)",
"Languages & Linguistics<br>(225)",
"Inorganic & Nuclear Chemistry<br>(9)",
"Information Systems<br>(314)",
"Anthropology<br>(223)",
"General Clinical Medicine<br>(45)",
"Human Factors<br>(18)",
"Horticulture<br>(2316)",
"Immunology<br>(40)",
"History of Social Sciences<br>(211)",
"Health Policy & Services<br>(17)",
"Geological & Geomatics Engineering<br>(436)",
"Bioinformatics<br>(711)",
"Polymers<br>(8)",
"Anatomy & Morphology<br>(76)",
"Chemical Engineering<br>(475)",
"Chemical Physics<br>(2)",
"Cardiovascular System & Hematology<br>(58)",
"Anthropology<br>(285)",
"Anesthesiology<br>(59)",
"Biophysics<br>(74)",
"Analytical Chemistry<br>(10)",
"Cultural Studies<br>(127)",
"Public Health<br>(16)",
"Artificial Intelligence & Image Processing<br>(494)",
"Geology<br>(5)",
"Plant Biology & Botany<br>(10)",
"Dentistry<br>(56)",
"Philosophy<br>(208)",
"Marketing<br>(138)",
"Information & Library Sciences<br>(111)",
"Entomology<br>(12)",
"Environmental & Occupational Health<br>(47)",
"Evolutionary Biology<br>(12)",
"Industrial Relations<br>(153)",
"Forestry<br>(2576)",
"General Physics<br>(2)",
"Political Science & Public Administration<br>(91)",
"Medicinal & Biomolecular Chemistry<br>(8)",
"Industrial Engineering & Automation<br>(425)",
"History<br>(218)",
"Genetics & Heredity<br>(74)",
"Astronomy & Astrophysics<br>(2)",
"Biochemistry & Molecular Biology<br>(75)",
"Business & Management<br>(186)",
"Clinical Psychology<br>(19)",
"Electrical & Electronic Engineering<br>(448)",
"Applied Physics<br>(2)",
"Economics<br>(156)",
"Agriculture, Fisheries & Forestry<br>(15648)",
"Biology<br>(415)",
"Biology<br>(474)",
"Biomedical Research<br>(1049)",
"Biomedical Research<br>(3112)",
"Biomedical Research<br>(3112)",
"Built Environment & Design<br>(15648)",
"Built Environment & Design<br>(9232)",
"Chemistry<br>(327)",
"Chemistry<br>(474)",
"Clinical Medicine<br>(1049)",
"Clinical Medicine<br>(1067)",
"Clinical Medicine<br>(1273)",
"Clinical Medicine<br>(537)",
"Clinical Medicine<br>(814)",
"Communication & Textual Studies<br>(3385)",
"Earth & Environmental Sciences<br>(327)",
"Economics & Business <br>(3385)",
"Economics & Business <br>(9232)",
"Enabling & Strategic Technologies<br>(9232)",
"Engineering<br>(1226)",
"Engineering<br>(3940)",
"Historical Studies<br>(3385)",
"Information & Communication Technologies<br>(1226)",
"Information & Communication Technologies<br>(2032)",
"Information & Communication Technologies<br>(847)",
"Mathematics & Statistics<br>(327)",
"Multidisciplinary<br>(415)",
"Philosophy & Theology<br>(3385)",
"Physics & Astronomy<br>(11)",
"Physics & Astronomy<br>(29)",
"Physics & Astronomy<br>(30)",
"Physics & Astronomy<br>(327)",
"Psychology & Cognitive Sciences<br>(1067)",
"Psychology & Cognitive Sciences<br>(612)",
"Public Health & Health Services<br>(415)",
"Public Health & Health Services<br>(612)",
"Social Sciences<br>(2032)",
"Social Sciences<br>(3112)",
"Social Sciences<br>(3385)",
"Applied Sciences<br>(29985)",
"Arts & Humanities<br>(8457)",
"Economic & Social Sciences<br>(8457)",
"Health Sciences<br>(5341)",
"Health Sciences<br>(847)",
"Multidisciplinary<br>(5341)",
"Natural Sciences<br>(1360)",
"Natural Sciences<br>(70)"
],
"marker": {
"colors": [
"#636efa",
"#EF553B",
"#00cc96",
"#ab63fa",
"#00cc96",
"#EF553B",
"#EF553B",
"#636efa",
"#00cc96",
"#636efa",
"#00cc96",
"#00cc96",
"#636efa",
"#636efa",
"#00cc96",
"#00cc96",
"#FFA15A",
"#00cc96",
"#00cc96",
"#636efa",
"#FFA15A",
"#19d3f3",
"#EF553B",
"#636efa",
"#636efa",
"#00cc96",
"#EF553B",
"#636efa",
"#EF553B",
"#00cc96",
"#ab63fa",
"#FFA15A",
"#00cc96",
"#ab63fa",
"#EF553B",
"#00cc96",
"#EF553B",
"#EF553B",
"#00cc96",
"#EF553B",
"#FFA15A",
"#EF553B",
"#636efa",
"#00cc96",
"#EF553B",
"#00cc96",
"#EF553B",
"#636efa",
"#EF553B",
"#00cc96",
"#FFA15A",
"#FFA15A",
"#00cc96",
"#00cc96",
"#00cc96",
"#636efa",
"#00cc96",
"#00cc96",
"#FFA15A",
"#FF6692",
"#636efa",
"#EF553B",
"#00cc96",
"#00cc96",
"#FFA15A",
"#EF553B",
"#00cc96",
"#636efa",
"#00cc96",
"#636efa",
"#636efa",
"#FFA15A",
"#00cc96",
"#00cc96",
"#00cc96",
"#00cc96",
"#FFA15A",
"#EF553B",
"#00cc96",
"#EF553B",
"#00cc96",
"#FF6692",
"#EF553B",
"#EF553B",
"#FF6692",
"#FFA15A",
"#EF553B",
"#EF553B",
"#FFA15A",
"#FFA15A",
"#00cc96",
"#EF553B",
"#FF6692",
"#00cc96",
"#EF553B",
"#00cc96",
"#00cc96",
"#EF553B",
"#EF553B",
"#00cc96",
"#EF553B",
"#FFA15A",
"#00cc96",
"#FFA15A",
"#00cc96",
"#EF553B",
"#FFA15A",
"#00cc96",
"#EF553B",
"#EF553B",
"#EF553B",
"#00cc96",
"#EF553B",
"#EF553B",
"#EF553B",
"#636efa",
"#636efa",
"#FFA15A",
"#EF553B",
"#00cc96",
"#EF553B",
"#636efa",
"#00cc96",
"#00cc96",
"#FFA15A",
"#00cc96",
"#EF553B",
"#ab63fa",
"#FFA15A",
"#EF553B",
"#ab63fa",
"#00cc96",
"#00cc96",
"#EF553B",
"#00cc96",
"#ab63fa",
"#00cc96",
"#EF553B",
"#EF553B",
"#FFA15A",
"#B6E880",
"#EF553B",
"#FF6692",
"#00cc96",
"#EF553B",
"#00cc96",
"#00cc96",
"#FFA15A",
"#636efa",
"#00cc96",
"#EF553B",
"#FFA15A",
"#FFA15A",
"#00cc96",
"#ab63fa",
"#636efa",
"#636efa",
"#FFA15A",
"#00cc96",
"#FFA15A",
"#636efa",
"#EF553B",
"#FF6692",
"#636efa",
"#FFA15A",
"#EF553B",
"#ab63fa",
"#00cc96",
"#FF6692",
"#00cc96",
"#636efa",
"#00cc96",
"#EF553B",
"#FF6692",
"#636efa",
"#EF553B",
"#FFA15A",
"#FFA15A",
"#00cc96",
"#00cc96",
"#B6E880",
"#EF553B",
"#EF553B",
"#FFA15A",
"#FFA15A",
"#00cc96",
"#00cc96",
"#00cc96",
"#00cc96",
"#00cc96",
"#ab63fa",
"#FFA15A",
"#636efa",
"#EF553B",
"#EF553B",
"#EF553B",
"#EF553B",
"#ab63fa",
"#EF553B",
"#EF553B",
"#EF553B",
"#FFA15A",
"#19d3f3",
"#ab63fa",
"#FF6692",
"#FF6692",
"#FF6692",
"#FFA15A",
"#00cc96",
"#00cc96",
"#00cc96",
"#00cc96",
"#EF553B",
"#636efa",
"#636efa",
"#EF553B",
"#ab63fa",
"#636efa",
"#00cc96",
"#B6E880",
"#19d3f3",
"#FFA15A",
"#FF6692"
]
},
"name": "",
"parents": [
"Economic & Social Sciences<br>(8457)/Economics & Business <br>(3385)",
"Applied Sciences<br>(29985)/Engineering<br>(3940)",
"Health Sciences<br>(5341)/Psychology & Cognitive Sciences<br>(612)",
"Arts & Humanities<br>(8457)/Communication & Textual Studies<br>(3385)",
"Health Sciences<br>(5341)/Clinical Medicine<br>(1049)",
"Applied Sciences<br>(29985)/Engineering<br>(3940)",
"Applied Sciences<br>(29985)/Information & Communication Technologies<br>(1226)",
"Economic & Social Sciences<br>(8457)/Social Sciences<br>(3385)",
"Health Sciences<br>(5341)/Clinical Medicine<br>(1067)",
"Economic & Social Sciences<br>(8457)/Economics & Business <br>(3385)",
"Health Sciences<br>(5341)/Psychology & Cognitive Sciences<br>(1067)",
"Health Sciences<br>(5341)/Clinical Medicine<br>(537)",
"Economic & Social Sciences<br>(8457)/Social Sciences<br>(3112)",
"Economic & Social Sciences<br>(8457)/Economics & Business <br>(3385)",
"Health Sciences<br>(5341)/Clinical Medicine<br>(1049)",
"Health Sciences<br>(5341)/Clinical Medicine<br>(814)",
"Natural Sciences<br>(1360)/Earth & Environmental Sciences<br>(327)",
"Health Sciences<br>(5341)/Clinical Medicine<br>(814)",
"Health Sciences<br>(5341)/Psychology & Cognitive Sciences<br>(1067)",
"Economic & Social Sciences<br>(8457)/Economics & Business <br>(3385)",
"Natural Sciences<br>(1360)/Mathematics & Statistics<br>(327)",
"Multidisciplinary<br>(5341)/Multidisciplinary<br>(415)",
"Applied Sciences<br>(29985)/Engineering<br>(1226)",
"Economic & Social Sciences<br>(8457)/Social Sciences<br>(3385)",
"Economic & Social Sciences<br>(8457)/Social Sciences<br>(3385)",
"Health Sciences<br>(5341)/Clinical Medicine<br>(1049)",
"Applied Sciences<br>(29985)/Economics & Business <br>(9232)",
"Economic & Social Sciences<br>(8457)/Economics & Business <br>(3385)",
"Applied Sciences<br>(29985)/Built Environment & Design<br>(9232)",
"Health Sciences<br>(5341)/Clinical Medicine<br>(1067)",
"Arts & Humanities<br>(8457)/Philosophy & Theology<br>(3385)",
"Natural Sciences<br>(1360)/Mathematics & Statistics<br>(327)",
"Health Sciences<br>(5341)/Clinical Medicine<br>(1049)",
"Arts & Humanities<br>(8457)/Historical Studies<br>(3385)",
"Applied Sciences<br>(29985)/Built Environment & Design<br>(15648)",
"Health Sciences<br>(5341)/Clinical Medicine<br>(1049)",
"Applied Sciences<br>(29985)/Built Environment & Design<br>(15648)",
"Applied Sciences<br>(29985)/Enabling & Strategic Technologies<br>(9232)",
"Health Sciences<br>(5341)/Clinical Medicine<br>(1067)",
"Applied Sciences<br>(29985)/Enabling & Strategic Technologies<br>(9232)",
"Natural Sciences<br>(1360)/Physics & Astronomy<br>(327)",
"Applied Sciences<br>(29985)/Engineering<br>(3940)",
"Economic & Social Sciences<br>(8457)/Economics & Business <br>(3385)",
"Health Sciences<br>(5341)/Psychology & Cognitive Sciences<br>(1067)",
"Applied Sciences<br>(29985)/Agriculture, Fisheries & Forestry<br>(15648)",
"Health Sciences<br>(5341)/Clinical Medicine<br>(1067)",
"Applied Sciences<br>(29985)/Engineering<br>(3940)",
"Economic & Social Sciences<br>(8457)/Social Sciences<br>(3385)",
"Applied Sciences<br>(29985)/Agriculture, Fisheries & Forestry<br>(15648)",
"Health Sciences<br>(5341)/Clinical Medicine<br>(537)",
"Natural Sciences<br>(1360)/Earth & Environmental Sciences<br>(327)",
"Natural Sciences<br>(1360)/Earth & Environmental Sciences<br>(327)",
"Health Sciences<br>(5341)/Biomedical Research<br>(3112)",
"Health Sciences<br>(5341)/Biomedical Research<br>(1049)",
"Health Sciences<br>(5341)/Clinical Medicine<br>(537)",
"Economic & Social Sciences<br>(8457)/Social Sciences<br>(3385)",
"Health Sciences<br>(5341)/Biomedical Research<br>(1049)",
"Health Sciences<br>(5341)/Psychology & Cognitive Sciences<br>(1067)",
"Natural Sciences<br>(1360)/Earth & Environmental Sciences<br>(327)",
"Natural Sciences<br>(70)/Physics & Astronomy<br>(29)",
"Economic & Social Sciences<br>(8457)/Social Sciences<br>(3385)",
"Applied Sciences<br>(29985)/Agriculture, Fisheries & Forestry<br>(15648)",
"Health Sciences<br>(5341)/Clinical Medicine<br>(1273)",
"Health Sciences<br>(5341)/Public Health & Health Services<br>(612)",
"Natural Sciences<br>(1360)/Mathematics & Statistics<br>(327)",
"Applied Sciences<br>(29985)/Information & Communication Technologies<br>(2032)",
"Health Sciences<br>(5341)/Biomedical Research<br>(1049)",
"Economic & Social Sciences<br>(8457)/Social Sciences<br>(3112)",
"Health Sciences<br>(5341)/Public Health & Health Services<br>(415)",
"Economic & Social Sciences<br>(8457)/Social Sciences<br>(3385)",
"Economic & Social Sciences<br>(8457)/Economics & Business <br>(3385)",
"Natural Sciences<br>(1360)/Mathematics & Statistics<br>(327)",
"Health Sciences<br>(5341)/Clinical Medicine<br>(1067)",
"Health Sciences<br>(5341)/Public Health & Health Services<br>(415)",
"Health Sciences<br>(5341)/Clinical Medicine<br>(1067)",
"Health Sciences<br>(5341)/Biomedical Research<br>(1049)",
"Natural Sciences<br>(1360)/Chemistry<br>(327)",
"Applied Sciences<br>(29985)/Information & Communication Technologies<br>(1226)",
"Health Sciences<br>(5341)/Public Health & Health Services<br>(415)",
"Applied Sciences<br>(29985)/Information & Communication Technologies<br>(2032)",
"Health Sciences<br>(5341)/Clinical Medicine<br>(1067)",
"Natural Sciences<br>(70)/Physics & Astronomy<br>(11)",
"Applied Sciences<br>(29985)/Enabling & Strategic Technologies<br>(9232)",
"Applied Sciences<br>(29985)/Enabling & Strategic Technologies<br>(9232)",
"Natural Sciences<br>(70)/Physics & Astronomy<br>(29)",
"Natural Sciences<br>(1360)/Chemistry<br>(327)",
"Applied Sciences<br>(29985)/Enabling & Strategic Technologies<br>(9232)",
"Applied Sciences<br>(29985)/Information & Communication Technologies<br>(2032)",
"Natural Sciences<br>(1360)/Earth & Environmental Sciences<br>(327)",
"Natural Sciences<br>(1360)/Biology<br>(474)",
"Health Sciences<br>(5341)/Biomedical Research<br>(3112)",
"Applied Sciences<br>(29985)/Engineering<br>(1226)",
"Natural Sciences<br>(70)/Physics & Astronomy<br>(11)",
"Health Sciences<br>(5341)/Biomedical Research<br>(1049)",
"Applied Sciences<br>(29985)/Enabling & Strategic Technologies<br>(9232)",
"Health Sciences<br>(5341)/Clinical Medicine<br>(537)",
"Health Sciences<br>(5341)/Clinical Medicine<br>(814)",
"Applied Sciences<br>(29985)/Information & Communication Technologies<br>(2032)",
"Applied Sciences<br>(29985)/Engineering<br>(1226)",
"Health Sciences<br>(5341)/Public Health & Health Services<br>(612)",
"Applied Sciences<br>(29985)/Enabling & Strategic Technologies<br>(9232)",
"Natural Sciences<br>(1360)/Biology<br>(474)",
"Health Sciences<br>(5341)/Clinical Medicine<br>(814)",
"Natural Sciences<br>(1360)/Mathematics & Statistics<br>(327)",
"Health Sciences<br>(5341)/Clinical Medicine<br>(814)",
"Applied Sciences<br>(29985)/Economics & Business <br>(9232)",
"Natural Sciences<br>(1360)/Biology<br>(474)",
"Health Sciences<br>(5341)/Clinical Medicine<br>(814)",
"Applied Sciences<br>(29985)/Agriculture, Fisheries & Forestry<br>(15648)",
"Applied Sciences<br>(29985)/Agriculture, Fisheries & Forestry<br>(15648)",
"Applied Sciences<br>(29985)/Enabling & Strategic Technologies<br>(9232)",
"Health Sciences<br>(5341)/Public Health & Health Services<br>(612)",
"Applied Sciences<br>(29985)/Engineering<br>(3940)",
"Applied Sciences<br>(29985)/Enabling & Strategic Technologies<br>(9232)",
"Applied Sciences<br>(29985)/Information & Communication Technologies<br>(1226)",
"Economic & Social Sciences<br>(8457)/Social Sciences<br>(3385)",
"Economic & Social Sciences<br>(8457)/Economics & Business <br>(3385)",
"Natural Sciences<br>(1360)/Biology<br>(415)",
"Applied Sciences<br>(29985)/Information & Communication Technologies<br>(847)",
"Health Sciences<br>(5341)/Biomedical Research<br>(3112)",
"Applied Sciences<br>(29985)/Built Environment & Design<br>(9232)",
"Economic & Social Sciences<br>(8457)/Social Sciences<br>(3385)",
"Health Sciences<br>(5341)/Clinical Medicine<br>(1049)",
"Health Sciences<br>(5341)/Clinical Medicine<br>(1273)",
"Natural Sciences<br>(1360)/Chemistry<br>(474)",
"Health Sciences<br>(5341)/Clinical Medicine<br>(1273)",
"Applied Sciences<br>(29985)/Engineering<br>(3940)",
"Arts & Humanities<br>(8457)/Communication & Textual Studies<br>(3385)",
"Natural Sciences<br>(1360)/Chemistry<br>(474)",
"Applied Sciences<br>(29985)/Information & Communication Technologies<br>(2032)",
"Arts & Humanities<br>(8457)/Historical Studies<br>(3385)",
"Health Sciences<br>(5341)/Clinical Medicine<br>(1273)",
"Health Sciences<br>(5341)/Psychology & Cognitive Sciences<br>(612)",
"Applied Sciences<br>(29985)/Agriculture, Fisheries & Forestry<br>(15648)",
"Health Sciences<br>(5341)/Clinical Medicine<br>(814)",
"Arts & Humanities<br>(8457)/Historical Studies<br>(3385)",
"Health Sciences<br>(5341)/Public Health & Health Services<br>(612)",
"Applied Sciences<br>(29985)/Engineering<br>(3940)",
"Applied Sciences<br>(29985)/Enabling & Strategic Technologies<br>(9232)",
"Natural Sciences<br>(1360)/Chemistry<br>(327)",
"Health Sciences<br>(847)/Biomedical Research<br>(3112)",
"Applied Sciences<br>(29985)/Engineering<br>(3940)",
"Natural Sciences<br>(70)/Physics & Astronomy<br>(29)",
"Health Sciences<br>(5341)/Clinical Medicine<br>(1049)",
"Applied Sciences<br>(29985)/Social Sciences<br>(2032)",
"Health Sciences<br>(5341)/Clinical Medicine<br>(1049)",
"Health Sciences<br>(5341)/Biomedical Research<br>(3112)",
"Natural Sciences<br>(1360)/Chemistry<br>(474)",
"Economic & Social Sciences<br>(8457)/Social Sciences<br>(3385)",
"Health Sciences<br>(5341)/Public Health & Health Services<br>(612)",
"Applied Sciences<br>(29985)/Engineering<br>(3940)",
"Natural Sciences<br>(1360)/Earth & Environmental Sciences<br>(327)",
"Natural Sciences<br>(1360)/Biology<br>(474)",
"Health Sciences<br>(5341)/Clinical Medicine<br>(1049)",
"Arts & Humanities<br>(8457)/Philosophy & Theology<br>(3385)",
"Economic & Social Sciences<br>(8457)/Economics & Business <br>(3385)",
"Economic & Social Sciences<br>(8457)/Social Sciences<br>(3385)",
"Natural Sciences<br>(1360)/Biology<br>(415)",
"Health Sciences<br>(5341)/Clinical Medicine<br>(1273)",
"Natural Sciences<br>(1360)/Biology<br>(415)",
"Economic & Social Sciences<br>(8457)/Economics & Business <br>(3385)",
"Applied Sciences<br>(29985)/Agriculture, Fisheries & Forestry<br>(15648)",
"Natural Sciences<br>(70)/Physics & Astronomy<br>(29)",
"Economic & Social Sciences<br>(8457)/Social Sciences<br>(3385)",
"Natural Sciences<br>(1360)/Chemistry<br>(474)",
"Applied Sciences<br>(29985)/Engineering<br>(1226)",
"Arts & Humanities<br>(8457)/Historical Studies<br>(3385)",
"Health Sciences<br>(5341)/Biomedical Research<br>(3112)",
"Natural Sciences<br>(70)/Physics & Astronomy<br>(30)",
"Health Sciences<br>(5341)/Biomedical Research<br>(3112)",
"Economic & Social Sciences<br>(8457)/Economics & Business <br>(3385)",
"Health Sciences<br>(5341)/Psychology & Cognitive Sciences<br>(1067)",
"Applied Sciences<br>(29985)/Engineering<br>(3940)",
"Natural Sciences<br>(70)/Physics & Astronomy<br>(30)",
"Economic & Social Sciences<br>(8457)/Economics & Business <br>(3385)",
"Applied Sciences<br>(29985)",
"Natural Sciences<br>(1360)",
"Natural Sciences<br>(1360)",
"Health Sciences<br>(5341)",
"Health Sciences<br>(5341)",
"Health Sciences<br>(847)",
"Applied Sciences<br>(29985)",
"Applied Sciences<br>(29985)",
"Natural Sciences<br>(1360)",
"Natural Sciences<br>(1360)",
"Health Sciences<br>(5341)",
"Health Sciences<br>(5341)",
"Health Sciences<br>(5341)",
"Health Sciences<br>(5341)",
"Health Sciences<br>(5341)",
"Arts & Humanities<br>(8457)",
"Natural Sciences<br>(1360)",
"Economic & Social Sciences<br>(8457)",
"Applied Sciences<br>(29985)",
"Applied Sciences<br>(29985)",
"Applied Sciences<br>(29985)",
"Applied Sciences<br>(29985)",
"Arts & Humanities<br>(8457)",
"Applied Sciences<br>(29985)",
"Applied Sciences<br>(29985)",
"Applied Sciences<br>(29985)",
"Natural Sciences<br>(1360)",
"Multidisciplinary<br>(5341)",
"Arts & Humanities<br>(8457)",
"Natural Sciences<br>(70)",
"Natural Sciences<br>(70)",
"Natural Sciences<br>(70)",
"Natural Sciences<br>(1360)",
"Health Sciences<br>(5341)",
"Health Sciences<br>(5341)",
"Health Sciences<br>(5341)",
"Health Sciences<br>(5341)",
"Applied Sciences<br>(29985)",
"Economic & Social Sciences<br>(8457)",
"Economic & Social Sciences<br>(8457)",
"",
"",
"",
"",
"",
"",
"",
""
],
"type": "sunburst",
"values": [
0.006513243595310464,
0.7577073382544508,
0.04125054277029961,
0.021710811984368215,
0.026052974381241857,
0.019539730785931395,
0.4515848892748589,
0.010855405992184108,
0.12158054711246201,
0.008684324793747287,
0.02822405557967868,
0.05427702996092054,
0.004342162396873643,
0.004342162396873643,
0.2540165002171081,
0.1606600086843248,
1.5436387320885803,
0.9769865392965698,
0.5861919235779418,
0.13243595310464612,
0.010855405992184108,
1.8389057750759878,
1.033434650455927,
0.006513243595310464,
0.013026487190620929,
0.03690838037342597,
0.0021710811984368217,
0.14329135909683022,
0.19973947025618757,
0.10204081632653061,
0.021710811984368215,
1.1267911419887104,
0.03473729917498915,
0.030395136778115502,
0.004342162396873643,
0.1280937907077725,
0.6730351715154147,
0.9531046461137647,
0.08684324793747286,
0.1975683890577508,
0.9726443768996961,
0.47546678245766394,
0.006513243595310464,
0.052105948762483714,
0.6317846287451151,
0.06296135475466783,
0.019539730785931395,
0.1498046026921407,
0.052105948762483714,
0.052105948762483714,
0.11506730351715155,
0.09986973512809379,
0.4580981328701693,
0.11940946591402518,
0.03256621797655232,
0.004342162396873643,
0.1606600086843248,
0.0021710811984368217,
0.8445505861919236,
0.9096830221450282,
0.13026487190620928,
0.07815892314372558,
0.07381676074685194,
0.03907946157186279,
0.27572731220147634,
1.2983065566652192,
0.401650021710812,
0.004342162396873643,
0.33868866695614414,
0.03256621797655232,
0.18671298306556666,
0.4884932696482849,
0.09986973512809379,
0.04125054277029961,
0.4537559704732957,
0.021710811984368215,
0.09769865392965696,
17.184107685627442,
0.026052974381241857,
0.3603994789405124,
0.0803300043421624,
1.2353452019105515,
0.9465914025184543,
0.6187581415544942,
0.13460703430308293,
0.23664785062961358,
0.008684324793747287,
0.3799392097264438,
1.7194963091619626,
0.017368649587494574,
0.04125054277029961,
0.04125054277029961,
1.0312635692574903,
0.04125054277029961,
0.8727746417716022,
0.04993486756404689,
0.15414676508901434,
11.636995223621364,
1.3721233174120713,
0.07815892314372558,
0.006513243595310464,
0.1628310898827616,
1.569691706469822,
0.8619192357794181,
1.022579244463743,
0.030395136778115502,
0.019539730785931395,
0.023881893182805036,
0.0803300043421624,
0.2996092053842814,
0.0021710811984368217,
0.15631784628745116,
1.0725141120277897,
4.266174554928354,
0.2496743378202345,
0.18671298306556666,
1.1354754667824576,
0.8206686930091186,
1.21580547112462,
0.657837603126357,
0.2887537993920973,
0.017368649587494574,
0.03690838037342597,
0.48415110725141114,
0.05861919235779418,
0.16500217108119844,
1.157186278766826,
0.04342162396873643,
0.04776378636561007,
1.1962657403386887,
0.008684324793747287,
0.03907946157186279,
0.16500217108119844,
0.008684324793747287,
0.4038211029092488,
0.0021710811984368217,
0.07164567954841511,
5.592705167173253,
0.681719496309162,
0.12592270950933565,
0.013026487190620929,
0.4363873208858011,
0.303951367781155,
0.4038211029092488,
0.0021710811984368217,
0.03473729917498915,
0.04776378636561007,
1.9452887537993921,
0.004342162396873643,
0.2778983933999132,
0.026052974381241857,
0.08901432913590968,
0.47329570125922715,
0.08684324793747286,
0.0021710811984368217,
0.1606600086843248,
0.12592270950933565,
0.017368649587494574,
0.03690838037342597,
0.256187581415545,
0.008684324793747287,
0.17802865827181935,
0.34737299174989145,
0.017368649587494574,
0.1498046026921407,
5.028224055579679,
0.021710811984368215,
0.11289622231871473,
1.1115935735996527,
0.24099001302648718,
0.3300043421623969,
0.026052974381241857,
3.0112896222318715,
0.7099435518888406,
0.12158054711246201,
1.3287016934433349,
1.0942249240121582,
0.6730351715154147,
0.7446808510638299,
1.5588363004776378,
0.013026487190620929,
0.6773773339122884,
0.4884932696482849,
0.4602692140686062,
2.201476335214937,
1.0421189752496742,
1.0073816760746852,
0.7989578810247503,
0.18888406426400348,
4.311767260095528,
0.06513243595310464,
4.411636995223621,
2.2448979591836733,
0.03256621797655233,
8.554059921841077,
7.475032566217977,
12.56838905775076,
0.06296135475466783,
17.885366912722535,
14.871906209292227,
1.21580547112462,
2.763786365610074,
1.8389057750759878,
0.023881893182805036,
2.266608771168042,
1.6956144159791575,
1.8215371254884933,
0.9726443768996961,
0.6947459834997829,
0.20625271385149804,
0.4059921841076856,
0.6231003039513678,
0.0021710811984368217,
0.008684324793747287,
0.6990881458966566,
65.0998697351281,
0.1519756838905775,
2.952670429874077,
11.582718193660442,
0.013026487190620929,
1.8389057750759878,
12.577073382544507,
5.7837603126356925
]
}
],
"layout": {
"legend": {
"tracegroupgap": 0
},
"template": {
"data": {
"bar": [
{
"error_x": {
"color": "#2a3f5f"
},
"error_y": {
"color": "#2a3f5f"
},
"marker": {
"line": {
"color": "#E5ECF6",
"width": 0.5
},
"pattern": {
"fillmode": "overlay",
"size": 10,
"solidity": 0.2
}
},
"type": "bar"
}
],
"barpolar": [
{
"marker": {
"line": {
"color": "#E5ECF6",
"width": 0.5
},
"pattern": {
"fillmode": "overlay",
"size": 10,
"solidity": 0.2
}
},
"type": "barpolar"
}
],
"carpet": [
{
"aaxis": {
"endlinecolor": "#2a3f5f",
"gridcolor": "white",
"linecolor": "white",
"minorgridcolor": "white",
"startlinecolor": "#2a3f5f"
},
"baxis": {
"endlinecolor": "#2a3f5f",
"gridcolor": "white",
"linecolor": "white",
"minorgridcolor": "white",
"startlinecolor": "#2a3f5f"
},
"type": "carpet"
}
],
"choropleth": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "choropleth"
}
],
"contour": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "contour"
}
],
"contourcarpet": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "contourcarpet"
}
],
"heatmap": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "heatmap"
}
],
"heatmapgl": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "heatmapgl"
}
],
"histogram": [
{
"marker": {
"pattern": {
"fillmode": "overlay",
"size": 10,
"solidity": 0.2
}
},
"type": "histogram"
}
],
"histogram2d": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "histogram2d"
}
],
"histogram2dcontour": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "histogram2dcontour"
}
],
"mesh3d": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "mesh3d"
}
],
"parcoords": [
{
"line": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "parcoords"
}
],
"pie": [
{
"automargin": true,
"type": "pie"
}
],
"scatter": [
{
"fillpattern": {
"fillmode": "overlay",
"size": 10,
"solidity": 0.2
},
"type": "scatter"
}
],
"scatter3d": [
{
"line": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatter3d"
}
],
"scattercarpet": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattercarpet"
}
],
"scattergeo": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattergeo"
}
],
"scattergl": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattergl"
}
],
"scattermapbox": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattermapbox"
}
],
"scatterpolar": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterpolar"
}
],
"scatterpolargl": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterpolargl"
}
],
"scatterternary": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterternary"
}
],
"surface": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "surface"
}
],
"table": [
{
"cells": {
"fill": {
"color": "#EBF0F8"
},
"line": {
"color": "white"
}
},
"header": {
"fill": {
"color": "#C8D4E3"
},
"line": {
"color": "white"
}
},
"type": "table"
}
]
},
"layout": {
"annotationdefaults": {
"arrowcolor": "#2a3f5f",
"arrowhead": 0,
"arrowwidth": 1
},
"autotypenumbers": "strict",
"coloraxis": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"colorscale": {
"diverging": [
[
0,
"#8e0152"
],
[
0.1,
"#c51b7d"
],
[
0.2,
"#de77ae"
],
[
0.3,
"#f1b6da"
],
[
0.4,
"#fde0ef"
],
[
0.5,
"#f7f7f7"
],
[
0.6,
"#e6f5d0"
],
[
0.7,
"#b8e186"
],
[
0.8,
"#7fbc41"
],
[
0.9,
"#4d9221"
],
[
1,
"#276419"
]
],
"sequential": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"sequentialminus": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
]
},
"colorway": [
"#636efa",
"#EF553B",
"#00cc96",
"#ab63fa",
"#FFA15A",
"#19d3f3",
"#FF6692",
"#B6E880",
"#FF97FF",
"#FECB52"
],
"font": {
"color": "#2a3f5f"
},
"geo": {
"bgcolor": "white",
"lakecolor": "white",
"landcolor": "#E5ECF6",
"showlakes": true,
"showland": true,
"subunitcolor": "white"
},
"hoverlabel": {
"align": "left"
},
"hovermode": "closest",
"mapbox": {
"style": "light"
},
"paper_bgcolor": "white",
"plot_bgcolor": "#E5ECF6",
"polar": {
"angularaxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
},
"bgcolor": "#E5ECF6",
"radialaxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
}
},
"scene": {
"xaxis": {
"backgroundcolor": "#E5ECF6",
"gridcolor": "white",
"gridwidth": 2,
"linecolor": "white",
"showbackground": true,
"ticks": "",
"zerolinecolor": "white"
},
"yaxis": {
"backgroundcolor": "#E5ECF6",
"gridcolor": "white",
"gridwidth": 2,
"linecolor": "white",
"showbackground": true,
"ticks": "",
"zerolinecolor": "white"
},
"zaxis": {
"backgroundcolor": "#E5ECF6",
"gridcolor": "white",
"gridwidth": 2,
"linecolor": "white",
"showbackground": true,
"ticks": "",
"zerolinecolor": "white"
}
},
"shapedefaults": {
"line": {
"color": "#2a3f5f"
}
},
"ternary": {
"aaxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
},
"baxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
},
"bgcolor": "#E5ECF6",
"caxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
}
},
"title": {
"x": 0.05
},
"xaxis": {
"automargin": true,
"gridcolor": "white",
"linecolor": "white",
"ticks": "",
"title": {
"standoff": 15
},
"zerolinecolor": "white",
"zerolinewidth": 2
},
"yaxis": {
"automargin": true,
"gridcolor": "white",
"linecolor": "white",
"ticks": "",
"title": {
"standoff": 15
},
"zerolinecolor": "white",
"zerolinewidth": 2
}
}
},
"title": {
"text": "Distribution of topics<br>(METRIX classification)"
}
}
},
"text/html": [
"<div> <div id=\"fe42b1b2-585b-422d-a79a-fc4604404298\" class=\"plotly-graph-div\" style=\"height:525px; width:100%;\"></div> <script type=\"text/javascript\"> require([\"plotly\"], function(Plotly) { window.PLOTLYENV=window.PLOTLYENV || {}; if (document.getElementById(\"fe42b1b2-585b-422d-a79a-fc4604404298\")) { Plotly.newPlot( \"fe42b1b2-585b-422d-a79a-fc4604404298\", [{\"branchvalues\":\"total\",\"customdata\":[[\"Economic & Social Sciences<br>(8457)\"],[\"Applied Sciences<br>(29985)\"],[\"Health Sciences<br>(5341)\"],[\"Arts & Humanities<br>(8457)\"],[\"Health Sciences<br>(5341)\"],[\"Applied Sciences<br>(29985)\"],[\"Applied Sciences<br>(29985)\"],[\"Economic & Social Sciences<br>(8457)\"],[\"Health Sciences<br>(5341)\"],[\"Economic & Social Sciences<br>(8457)\"],[\"Health Sciences<br>(5341)\"],[\"Health Sciences<br>(5341)\"],[\"Economic & Social Sciences<br>(8457)\"],[\"Economic & Social Sciences<br>(8457)\"],[\"Health Sciences<br>(5341)\"],[\"Health Sciences<br>(5341)\"],[\"Natural Sciences<br>(1360)\"],[\"Health Sciences<br>(5341)\"],[\"Health Sciences<br>(5341)\"],[\"Economic & Social Sciences<br>(8457)\"],[\"Natural Sciences<br>(1360)\"],[\"Multidisciplinary<br>(5341)\"],[\"Applied Sciences<br>(29985)\"],[\"Economic & Social Sciences<br>(8457)\"],[\"Economic & Social Sciences<br>(8457)\"],[\"Health Sciences<br>(5341)\"],[\"Applied Sciences<br>(29985)\"],[\"Economic & Social Sciences<br>(8457)\"],[\"Applied Sciences<br>(29985)\"],[\"Health Sciences<br>(5341)\"],[\"Arts & Humanities<br>(8457)\"],[\"Natural Sciences<br>(1360)\"],[\"Health Sciences<br>(5341)\"],[\"Arts & Humanities<br>(8457)\"],[\"Applied Sciences<br>(29985)\"],[\"Health Sciences<br>(5341)\"],[\"Applied Sciences<br>(29985)\"],[\"Applied Sciences<br>(29985)\"],[\"Health Sciences<br>(5341)\"],[\"Applied Sciences<br>(29985)\"],[\"Natural Sciences<br>(1360)\"],[\"Applied Sciences<br>(29985)\"],[\"Economic & Social Sciences<br>(8457)\"],[\"Health Sciences<br>(5341)\"],[\"Applied Sciences<br>(29985)\"],[\"Health Sciences<br>(5341)\"],[\"Applied Sciences<br>(29985)\"],[\"Economic & Social Sciences<br>(8457)\"],[\"Applied Sciences<br>(29985)\"],[\"Health Sciences<br>(5341)\"],[\"Natural Sciences<br>(1360)\"],[\"Natural Sciences<br>(1360)\"],[\"Health Sciences<br>(5341)\"],[\"Health Sciences<br>(5341)\"],[\"Health Sciences<br>(5341)\"],[\"Economic & Social Sciences<br>(8457)\"],[\"Health Sciences<br>(5341)\"],[\"Health Sciences<br>(5341)\"],[\"Natural Sciences<br>(1360)\"],[\"Natural Sciences<br>(70)\"],[\"Economic & Social Sciences<br>(8457)\"],[\"Applied Sciences<br>(29985)\"],[\"Health Sciences<br>(5341)\"],[\"Health Sciences<br>(5341)\"],[\"Natural Sciences<br>(1360)\"],[\"Applied Sciences<br>(29985)\"],[\"Health Sciences<br>(5341)\"],[\"Economic & Social Sciences<br>(8457)\"],[\"Health Sciences<br>(5341)\"],[\"Economic & Social Sciences<br>(8457)\"],[\"Economic & Social Sciences<br>(8457)\"],[\"Natural Sciences<br>(1360)\"],[\"Health Sciences<br>(5341)\"],[\"Health Sciences<br>(5341)\"],[\"Health Sciences<br>(5341)\"],[\"Health Sciences<br>(5341)\"],[\"Natural Sciences<br>(1360)\"],[\"Applied Sciences<br>(29985)\"],[\"Health Sciences<br>(5341)\"],[\"Applied Sciences<br>(29985)\"],[\"Health Sciences<br>(5341)\"],[\"Natural Sciences<br>(70)\"],[\"Applied Sciences<br>(29985)\"],[\"Applied Sciences<br>(29985)\"],[\"Natural Sciences<br>(70)\"],[\"Natural Sciences<br>(1360)\"],[\"Applied Sciences<br>(29985)\"],[\"Applied Sciences<br>(29985)\"],[\"Natural Sciences<br>(1360)\"],[\"Natural Sciences<br>(1360)\"],[\"Health Sciences<br>(5341)\"],[\"Applied Sciences<br>(29985)\"],[\"Natural Sciences<br>(70)\"],[\"Health Sciences<br>(5341)\"],[\"Applied Sciences<br>(29985)\"],[\"Health Sciences<br>(5341)\"],[\"Health Sciences<br>(5341)\"],[\"Applied Sciences<br>(29985)\"],[\"Applied Sciences<br>(29985)\"],[\"Health Sciences<br>(5341)\"],[\"Applied Sciences<br>(29985)\"],[\"Natural Sciences
" \n",
"var gd = document.getElementById('fe42b1b2-585b-422d-a79a-fc4604404298');\n",
"var x = new MutationObserver(function (mutations, observer) {{\n",
" var display = window.getComputedStyle(gd).display;\n",
" if (!display || display === 'none') {{\n",
" console.log([gd, 'removed!']);\n",
" Plotly.purge(gd);\n",
" observer.disconnect();\n",
" }}\n",
"}});\n",
"\n",
"// Listen for the removal of the full notebook cells\n",
"var notebookContainer = gd.closest('#notebook-container');\n",
"if (notebookContainer) {{\n",
" x.observe(notebookContainer, {childList: true});\n",
"}}\n",
"\n",
"// Listen for the clearing of the current output cell\n",
"var outputEl = gd.closest('.output');\n",
"if (outputEl) {{\n",
" x.observe(outputEl, {childList: true});\n",
"}}\n",
"\n",
" }) }; }); </script> </div>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"fig = px.sunburst(data, path=groups, values=\"percent\",\n",
" color='Domain_English',title=\"Distribution of topics<br>(METRIX classification)\", template='plotly')\n",
"fig.update_traces(hovertemplate='%{label}<br>%{value:.2f}%')\n",
"fig.show(config= dict(displayModeBar = False))"
]
},
{
"cell_type": "markdown",
"id": "66fca444",
"metadata": {},
"source": [
"## Domains"
]
},
{
"cell_type": "code",
"execution_count": 338,
"id": "af12584f",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Domain_English</th>\n",
" <th>UT (Unique WOS ID)</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>Applied Sciences</td>\n",
" <td>29985</td>\n",
" </tr>\n",
" <tr>\n",
" <th>5</th>\n",
" <td>Natural Sciences</td>\n",
" <td>8457</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>Health Sciences</td>\n",
" <td>5341</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>Economic &amp; Social Sciences</td>\n",
" <td>1360</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>Multidisciplinary</td>\n",
" <td>847</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>Arts &amp; Humanities</td>\n",
" <td>70</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" Domain_English UT (Unique WOS ID)\n",
"0 Applied Sciences 29985\n",
"5 Natural Sciences 8457\n",
"3 Health Sciences 5341\n",
"2 Economic & Social Sciences 1360\n",
"4 Multidisciplinary 847\n",
"1 Arts & Humanities 70"
]
},
"execution_count": 338,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"group = 'Domain_English'\n",
"data = wos.groupby(group, as_index=False)[record_col].nunique().sort_values(ascending=False, by=record_col)\n",
"data"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "936960f5",
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": 339,
"id": "f8e72c87",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAucAAAHJCAYAAAAmSZcTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB7c0lEQVR4nO3dd3yN9///8UeMiJlYQe0ZMRJBRKwQWnvXllTt/bFJ7VV7xia1VxGEWKWlqK1GUSO22jsokpzfH/nl+joyRI0cPO+327nd5Brv9/t6n+Pkea7zuq5YmUwmEyIiIiIiEufixfUAREREREQknMK5iIiIiIiFUDgXEREREbEQCuciIiIiIhZC4VxERERExEIonIuIiIiIWAiFcxERERERC6FwLiIiIiJiIRTORUTkvbCEv2lnCWMQEXkXCuciIl8ALy8vHBwcjEfevHlxcXGhTp06LFiwgJCQELPtPT096dOnT6zb37ZtG717937jdn369MHT0/M/9xOdR48e0atXLw4ePGgs8/LywsvL653bfl9CQkLo06cPLi4uFC5cmL1790baZt++fWbPk4ODAwUKFKB06dJ0796dc+fOxcHIY/a+nkMRCZcgrgcgIiIfR758+Rg4cCAAoaGhPHz4kN9//50RI0Zw8OBBJk6cSLx44edspkyZQrJkyWLd9rx582K1Xfv27fH29n7rsb/JqVOnWLt2LXXr1jWWRRyrpdi5cyerV6+mffv2lChRgnz58kW77YABA8ifPz8A//77L1euXGHOnDl8++23zJs3j0KFCn2kUb/Z275WRCRmCuciIl+IZMmSRQp1np6e5MiRg+HDh7N+/Xpq1KgBEGNwfBdZsmT5IO1GJVeuXB+tr9h48OABAHXq1CFz5swxbpsrVy6z56p48eJUrFiROnXq0KdPHwIDA4kfP/4HHG3sfajXisiXSmUtIiJfuKZNm5IuXTqWLVtmLHu9VCEiuDs5OVG8eHF69OjBzZs3gfDykf3797N//34cHBzYt2+fUZ6xbNkyypUrR+HChdm9e3ekshaAly9fMmzYMFxdXSlatCi9e/fm3r17xvqoylMi2o/oK+JsvLe3t7Ht6/s9f/6cqVOnUqlSJQoWLMg333zDrFmzCAsLM+urb9++zJo1i7Jly1KwYEEaNmzIsWPHYpzD0NBQFi9eTPXq1XFycqJs2bKMHTuW58+fA+HlPBHzWaFChf9UbpMiRQpatmzJhQsX2L9/v7H84sWLdO7cmZIlS1KoUCG8vLw4dOiQsf7q1as4ODiwadMm2rdvT6FChShRogTTpk0jODiYH374gSJFilCiRAnGjBljVrd/9epVevXqRalSpcifPz/u7u706tWL+/fvG9u8+lqJ6Gvjxo107twZFxcXihUrRr9+/Xj69Kmxz19//cV3331HkSJFcHFxoVmzZhw5cuSt50Tkc6RwLiLyhYsXLx7u7u4cO3YsUu05wKFDh+jVqxfffPMNs2fPxsfHh71799K9e3cgvHwkX7585MuXj+XLlxvlGBBe8tC7d28GDBiAi4tLlP1v3LiREydOMHLkSHr37s327dtp1aoVoaGhsRp//vz5GTBgABBeDhJVOYvJZKJt27bMmTOHevXqMWPGDCpVqsTEiRMjbb9582a2bdtGv379GD9+PHfu3KFTp04xjmfAgAGMGDGCChUqMH36dJo0acKiRYto3749JpOJ9u3b065dO2NO/mvJTcmSJQGM8H3u3Dnq1KnD1atX6devH2PHjsXKyorvvvvOLMAD9OvXjzx58jB9+nTc3d2ZNGkS3377LTY2NkyZMoVvvvmGOXPmsGnTJgCePXuGt7c3QUFBDBw4ED8/P7y9vQkMDGTChAkxjnPgwIFkzJiRadOm0aJFC1auXMn06dMBCA4OpmXLlqRMmRJfX18mTJjAs2fPaNGiBY8fP/5P8yLyOVFZi4iIkCZNGl6+fMmDBw9IkyaN2bpDhw5hY2ND69atsba2BsDOzo7jx49jMpnIlSuXUXP8etlM48aNqVSpUox9p0yZEj8/P5IkSWL83KFDB37//XfKlSv3xrEnS5bMKGHJlStXlOUsv//+O3/88Qfjx4+natWqQHjQtbGxYdKkSXh7e5M7d24g/MJNPz8/45iePHlC7969OXXqFAUKFIjU9rlz51i5ciXdu3endevWRtv29vb06tWL33//HQ8PD6Okx9HRkUyZMr3xuKKSNm1aAG7fvg2EB31ra2sWLFhgjLds2bJUq1aN0aNHs3LlSmPf0qVL06VLFwBy587N+vXrSZ06tfHBpnjx4qxbt47Dhw9TuXJlLl68SPr06Rk1apRRhlO8eHGOHj0aKfi/zsPDw7hA2N3dnd27d7N9+3bjotb79+/j7e1N4cKFAciRIwfLly/nyZMnJE+e/D/NjcjnQmfORUTEKGWwsrKKtM7V1ZVnz55RrVo1xo0bx8GDBylVqhQdO3aMcvtXOTo6vrFvDw8PI5hDeJlEggQJOHDgwFseRfT2799PggQJIn1QiKixfzVsvvphAyBdunRA+Jnk6NoGjNAfoWrVqsSPH599+/a9+wH8f68/T/v376dcuXJm402QIAFVq1blr7/+4smTJ8byV7+5iPgA5uTkZCyzsrLC1tbWOHvt6OjIkiVLyJgxIxcvXmTHjh34+flx/vx5Xrx4EeM4X/+Qlj59eqOsJXfu3KRKlYq2bdsyYMAAfvnlF9KkSUPPnj1Jnz79206JyGdH4VxERLh58yY2NjbY2dlFWufi4sKsWbPInDkzc+fOpUmTJpQpU4aFCxe+sd1XQ3d0Is4GR4gXLx4pU6bk0aNHsR7/mzx8+JCUKVNGuogyou9XyykSJ04caTyAWW36622/2laEBAkSkDJlyvdaqnHjxg0AI8Q+fPgw0jcdEB6+TSYTwcHBxrKo7qjypudn7ty5uLu7U7FiRX744Qf2798faX6iEtUcRnywSJo0KYsXL8bDw4ONGzfSsWNH3N3dGTBgwBtDv8iXQGUtIiJfuJCQEPbt20fhwoWjvQNI6dKlKV26NM+ePWPv3r0sWLCAYcOG4ezsbHb29b+IuItJhNDQUO7fv0/q1KnNlr3q1YsLY8PW1pb79+8TGhpqdoy3bt0Cwktp/itbW1sgvNQkY8aMxvKXL19y//79d2r7dX/88QcQ/m1GRN937tyJtF1E2UvKlCmNY3xb69atY+TIkfTs2ZM6deqQKlUqAP73v/9x/Pjx/9RmhBw5cjBmzBhCQ0M5duwYa9euZenSpWTJkoWWLVu+U9sinzqdORcR+cItX76c27dv06hRoyjXjxo1irp162IymUicODHlypUz6on/+ecf4P/OLv8Xu3fvNrsQdfPmzYSEhODm5gaEn/GNOGMc4dW7kQBvvK1gsWLFCAkJMS52jBAQEABAkSJF/vP4ixUrBkBgYKDZ8sDAQEJDQ9+p7VcFBwczd+5cHBwcjFptV1dXfvvtN7Mz5KGhoQQGBlKwYEHjGoH/4tChQ8YdYiKC+ZMnTzh06FC03yLExqZNmyhevDi3b98mfvz4uLi4MGjQIFKkSGG8nkS+ZDpzLiLyhQgODjZuVxcWFsb9+/fZtWsXy5cvp0aNGnzzzTdR7le8eHHmzp1Lnz59qFGjBi9fvmTOnDnY2dlRvHhxIPw2f3/++Sd79ux56/te3759m06dOuHl5cXFixcZP348JUuWxN3dHYBy5crx66+/MmLECDw9PTl48CBr1qwxayPiIsLt27dja2tL3rx5zdaXKVMGNzc3+vXrx82bN8mbNy/79+9n9uzZ1K5d+53uiZ4rVy5q167N5MmTefbsGa6urpw6dYopU6bg5uZG6dKl37rNc+fOkShRIiD8FpDnz59n4cKF3L9/n0mTJhk15x07duT333/H29ub1q1bkzBhQhYtWmT80aJ34eTkxNKlSxk5ciTlypXj1q1b+Pn5cefOHePbgv+icOHChIWF0aFDB1q3bk3SpEnZuHEjjx8/jvY1KPIlUTgXEflCnDx5kgYNGgDhF/8lTZqUPHnyMGjQIOrVqxftfh4eHowdO5affvrJuAi0SJEiLFiwwKh
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"g = sns.barplot(data, x=record_col, y=group)\n",
"g.set_xlim(0,35000)\n",
"g.set_ylabel(None)\n",
"g.set_xlabel(\"Number of co-publications\")\n",
"g.set_title(\"Distribution of Domains\")\n",
"for i in g.containers:\n",
" g.bar_label(i,fontsize=10)"
]
},
{
"cell_type": "code",
"execution_count": 340,
"id": "14e82a73",
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.plotly.v1+json": {
"config": {
"displayModeBar": false,
"plotlyServerURL": "https://plot.ly"
},
"data": [
{
"alignmentgroup": "True",
"hovertemplate": "%{x:d}",
"legendgroup": "Applied Sciences",
"marker": {
"color": "#636efa",
"pattern": {
"shape": ""
}
},
"name": "Applied Sciences",
"offsetgroup": "Applied Sciences",
"orientation": "h",
"showlegend": true,
"textposition": "auto",
"type": "bar",
"x": [
29985
],
"xaxis": "x",
"y": [
"Applied Sciences"
],
"yaxis": "y"
},
{
"alignmentgroup": "True",
"hovertemplate": "%{x:d}",
"legendgroup": "Natural Sciences",
"marker": {
"color": "#EF553B",
"pattern": {
"shape": ""
}
},
"name": "Natural Sciences",
"offsetgroup": "Natural Sciences",
"orientation": "h",
"showlegend": true,
"textposition": "auto",
"type": "bar",
"x": [
8457
],
"xaxis": "x",
"y": [
"Natural Sciences"
],
"yaxis": "y"
},
{
"alignmentgroup": "True",
"hovertemplate": "%{x:d}",
"legendgroup": "Health Sciences",
"marker": {
"color": "#00cc96",
"pattern": {
"shape": ""
}
},
"name": "Health Sciences",
"offsetgroup": "Health Sciences",
"orientation": "h",
"showlegend": true,
"textposition": "auto",
"type": "bar",
"x": [
5341
],
"xaxis": "x",
"y": [
"Health Sciences"
],
"yaxis": "y"
},
{
"alignmentgroup": "True",
"hovertemplate": "%{x:d}",
"legendgroup": "Economic & Social Sciences",
"marker": {
"color": "#ab63fa",
"pattern": {
"shape": ""
}
},
"name": "Economic & Social Sciences",
"offsetgroup": "Economic & Social Sciences",
"orientation": "h",
"showlegend": true,
"textposition": "auto",
"type": "bar",
"x": [
1360
],
"xaxis": "x",
"y": [
"Economic & Social Sciences"
],
"yaxis": "y"
},
{
"alignmentgroup": "True",
"hovertemplate": "%{x:d}",
"legendgroup": "Multidisciplinary",
"marker": {
"color": "#FFA15A",
"pattern": {
"shape": ""
}
},
"name": "Multidisciplinary",
"offsetgroup": "Multidisciplinary",
"orientation": "h",
"showlegend": true,
"textposition": "auto",
"type": "bar",
"x": [
847
],
"xaxis": "x",
"y": [
"Multidisciplinary"
],
"yaxis": "y"
},
{
"alignmentgroup": "True",
"hovertemplate": "%{x:d}",
"legendgroup": "Arts & Humanities",
"marker": {
"color": "#19d3f3",
"pattern": {
"shape": ""
}
},
"name": "Arts & Humanities",
"offsetgroup": "Arts & Humanities",
"orientation": "h",
"showlegend": true,
"textposition": "auto",
"type": "bar",
"x": [
70
],
"xaxis": "x",
"y": [
"Arts & Humanities"
],
"yaxis": "y"
}
],
"layout": {
"barmode": "relative",
"font": {
"family": "Montserrat"
},
"legend": {
"title": {
"text": ""
},
"tracegroupgap": 0
},
"shapes": [
{
"line": {
"color": "black",
"width": 0.5
},
"type": "rect",
"x0": 0,
"x1": 1,
"xref": "paper",
"y0": 0,
"y1": 1,
"yref": "paper"
}
],
"showlegend": false,
"template": {
"data": {
"bar": [
{
"error_x": {
"color": "#2a3f5f"
},
"error_y": {
"color": "#2a3f5f"
},
"marker": {
"line": {
"color": "#E5ECF6",
"width": 0.5
},
"pattern": {
"fillmode": "overlay",
"size": 10,
"solidity": 0.2
}
},
"type": "bar"
}
],
"barpolar": [
{
"marker": {
"line": {
"color": "#E5ECF6",
"width": 0.5
},
"pattern": {
"fillmode": "overlay",
"size": 10,
"solidity": 0.2
}
},
"type": "barpolar"
}
],
"carpet": [
{
"aaxis": {
"endlinecolor": "#2a3f5f",
"gridcolor": "white",
"linecolor": "white",
"minorgridcolor": "white",
"startlinecolor": "#2a3f5f"
},
"baxis": {
"endlinecolor": "#2a3f5f",
"gridcolor": "white",
"linecolor": "white",
"minorgridcolor": "white",
"startlinecolor": "#2a3f5f"
},
"type": "carpet"
}
],
"choropleth": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "choropleth"
}
],
"contour": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "contour"
}
],
"contourcarpet": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "contourcarpet"
}
],
"heatmap": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "heatmap"
}
],
"heatmapgl": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "heatmapgl"
}
],
"histogram": [
{
"marker": {
"pattern": {
"fillmode": "overlay",
"size": 10,
"solidity": 0.2
}
},
"type": "histogram"
}
],
"histogram2d": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "histogram2d"
}
],
"histogram2dcontour": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "histogram2dcontour"
}
],
"mesh3d": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "mesh3d"
}
],
"parcoords": [
{
"line": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "parcoords"
}
],
"pie": [
{
"automargin": true,
"type": "pie"
}
],
"scatter": [
{
"fillpattern": {
"fillmode": "overlay",
"size": 10,
"solidity": 0.2
},
"type": "scatter"
}
],
"scatter3d": [
{
"line": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatter3d"
}
],
"scattercarpet": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattercarpet"
}
],
"scattergeo": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattergeo"
}
],
"scattergl": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattergl"
}
],
"scattermapbox": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattermapbox"
}
],
"scatterpolar": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterpolar"
}
],
"scatterpolargl": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterpolargl"
}
],
"scatterternary": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterternary"
}
],
"surface": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "surface"
}
],
"table": [
{
"cells": {
"fill": {
"color": "#EBF0F8"
},
"line": {
"color": "white"
}
},
"header": {
"fill": {
"color": "#C8D4E3"
},
"line": {
"color": "white"
}
},
"type": "table"
}
]
},
"layout": {
"annotationdefaults": {
"arrowcolor": "#2a3f5f",
"arrowhead": 0,
"arrowwidth": 1
},
"autotypenumbers": "strict",
"coloraxis": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"colorscale": {
"diverging": [
[
0,
"#8e0152"
],
[
0.1,
"#c51b7d"
],
[
0.2,
"#de77ae"
],
[
0.3,
"#f1b6da"
],
[
0.4,
"#fde0ef"
],
[
0.5,
"#f7f7f7"
],
[
0.6,
"#e6f5d0"
],
[
0.7,
"#b8e186"
],
[
0.8,
"#7fbc41"
],
[
0.9,
"#4d9221"
],
[
1,
"#276419"
]
],
"sequential": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"sequentialminus": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
]
},
"colorway": [
"#636efa",
"#EF553B",
"#00cc96",
"#ab63fa",
"#FFA15A",
"#19d3f3",
"#FF6692",
"#B6E880",
"#FF97FF",
"#FECB52"
],
"font": {
"color": "#2a3f5f"
},
"geo": {
"bgcolor": "white",
"lakecolor": "white",
"landcolor": "#E5ECF6",
"showlakes": true,
"showland": true,
"subunitcolor": "white"
},
"hoverlabel": {
"align": "left"
},
"hovermode": "closest",
"mapbox": {
"style": "light"
},
"paper_bgcolor": "white",
"plot_bgcolor": "#E5ECF6",
"polar": {
"angularaxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
},
"bgcolor": "#E5ECF6",
"radialaxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
}
},
"scene": {
"xaxis": {
"backgroundcolor": "#E5ECF6",
"gridcolor": "white",
"gridwidth": 2,
"linecolor": "white",
"showbackground": true,
"ticks": "",
"zerolinecolor": "white"
},
"yaxis": {
"backgroundcolor": "#E5ECF6",
"gridcolor": "white",
"gridwidth": 2,
"linecolor": "white",
"showbackground": true,
"ticks": "",
"zerolinecolor": "white"
},
"zaxis": {
"backgroundcolor": "#E5ECF6",
"gridcolor": "white",
"gridwidth": 2,
"linecolor": "white",
"showbackground": true,
"ticks": "",
"zerolinecolor": "white"
}
},
"shapedefaults": {
"line": {
"color": "#2a3f5f"
}
},
"ternary": {
"aaxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
},
"baxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
},
"bgcolor": "#E5ECF6",
"caxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
}
},
"title": {
"x": 0.05
},
"xaxis": {
"automargin": true,
"gridcolor": "white",
"linecolor": "white",
"ticks": "",
"title": {
"standoff": 15
},
"zerolinecolor": "white",
"zerolinewidth": 2
},
"yaxis": {
"automargin": true,
"gridcolor": "white",
"linecolor": "white",
"ticks": "",
"title": {
"standoff": 15
},
"zerolinecolor": "white",
"zerolinewidth": 2
}
}
},
"title": {
"text": "Distribution of Domains"
},
"xaxis": {
"anchor": "y",
"domain": [
0,
1
],
"showgrid": true,
"tickformat": "d",
"ticks": "outside",
"title": {
"text": "Number of co-publications"
}
},
"yaxis": {
"anchor": "x",
"categoryarray": [
"Arts & Humanities",
"Multidisciplinary",
"Economic & Social Sciences",
"Health Sciences",
"Natural Sciences",
"Applied Sciences"
],
"categoryorder": "array",
"domain": [
0,
1
],
"showgrid": true,
"ticks": "outside",
"title": {
"text": ""
}
}
}
},
"text/html": [
"<div> <div id=\"c7e3fdf9-98d3-4ab6-ab9b-469e1eedffb7\" class=\"plotly-graph-div\" style=\"height:525px; width:100%;\"></div> <script type=\"text/javascript\"> require([\"plotly\"], function(Plotly) { window.PLOTLYENV=window.PLOTLYENV || {}; if (document.getElementById(\"c7e3fdf9-98d3-4ab6-ab9b-469e1eedffb7\")) { Plotly.newPlot( \"c7e3fdf9-98d3-4ab6-ab9b-469e1eedffb7\", [{\"alignmentgroup\":\"True\",\"hovertemplate\":\"%{x:d}\",\"legendgroup\":\"Applied Sciences\",\"marker\":{\"color\":\"#636efa\",\"pattern\":{\"shape\":\"\"}},\"name\":\"Applied Sciences\",\"offsetgroup\":\"Applied Sciences\",\"orientation\":\"h\",\"showlegend\":true,\"textposition\":\"auto\",\"x\":[29985],\"xaxis\":\"x\",\"y\":[\"Applied Sciences\"],\"yaxis\":\"y\",\"type\":\"bar\"},{\"alignmentgroup\":\"True\",\"hovertemplate\":\"%{x:d}\",\"legendgroup\":\"Natural Sciences\",\"marker\":{\"color\":\"#EF553B\",\"pattern\":{\"shape\":\"\"}},\"name\":\"Natural Sciences\",\"offsetgroup\":\"Natural Sciences\",\"orientation\":\"h\",\"showlegend\":true,\"textposition\":\"auto\",\"x\":[8457],\"xaxis\":\"x\",\"y\":[\"Natural Sciences\"],\"yaxis\":\"y\",\"type\":\"bar\"},{\"alignmentgroup\":\"True\",\"hovertemplate\":\"%{x:d}\",\"legendgroup\":\"Health Sciences\",\"marker\":{\"color\":\"#00cc96\",\"pattern\":{\"shape\":\"\"}},\"name\":\"Health Sciences\",\"offsetgroup\":\"Health Sciences\",\"orientation\":\"h\",\"showlegend\":true,\"textposition\":\"auto\",\"x\":[5341],\"xaxis\":\"x\",\"y\":[\"Health Sciences\"],\"yaxis\":\"y\",\"type\":\"bar\"},{\"alignmentgroup\":\"True\",\"hovertemplate\":\"%{x:d}\",\"legendgroup\":\"Economic & Social Sciences\",\"marker\":{\"color\":\"#ab63fa\",\"pattern\":{\"shape\":\"\"}},\"name\":\"Economic & Social Sciences\",\"offsetgroup\":\"Economic & Social Sciences\",\"orientation\":\"h\",\"showlegend\":true,\"textposition\":\"auto\",\"x\":[1360],\"xaxis\":\"x\",\"y\":[\"Economic & Social Sciences\"],\"yaxis\":\"y\",\"type\":\"bar\"},{\"alignmentgroup\":\"True\",\"hovertemplate\":\"%{x:d}\",\"legendgroup\":\"Multidisciplinary\",\"marker\":{\"color\":\"#FFA15A\",\"pattern\":{\"shape\":\"\"}},\"name\":\"Multidisciplinary\",\"offsetgroup\":\"Multidisciplinary\",\"orientation\":\"h\",\"showlegend\":true,\"textposition\":\"auto\",\"x\":[847],\"xaxis\":\"x\",\"y\":[\"Multidisciplinary\"],\"yaxis\":\"y\",\"type\":\"bar\"},{\"alignmentgroup\":\"True\",\"hovertemplate\":\"%{x:d}\",\"legendgroup\":\"Arts & Humanities\",\"marker\":{\"color\":\"#19d3f3\",\"pattern\":{\"shape\":\"\"}},\"name\":\"Arts & Humanities\",\"offsetgroup\":\"Arts & Humanities\",\"orientation\":\"h\",\"showlegend\":true,\"textposition\":\"auto\",\"x\":[70],\"xaxis\":\"x\",\"y\":[\"Arts & Humanities\"],\"yaxis\":\"y\",\"type\":\"bar\"}], {\"template\":{\"data\":{\"barpolar\":[{\"marker\":{\"line\":{\"color\":\"#E5ECF6\",\"width\":0.5},\"pattern\":{\"fillmode\":\"overlay\",\"size\":10,\"solidity\":0.2}},\"type\":\"barpolar\"}],\"bar\":[{\"error_x\":{\"color\":\"#2a3f5f\"},\"error_y\":{\"color\":\"#2a3f5f\"},\"marker\":{\"line\":{\"color\":\"#E5ECF6\",\"width\":0.5},\"pattern\":{\"fillmode\":\"overlay\",\"size\":10,\"solidity\":0.2}},\"type\":\"bar\"}],\"carpet\":[{\"aaxis\":{\"endlinecolor\":\"#2a3f5f\",\"gridcolor\":\"white\",\"linecolor\":\"white\",\"minorgridcolor\":\"white\",\"startlinecolor\":\"#2a3f5f\"},\"baxis\":{\"endlinecolor\":\"#2a3f5f\",\"gridcolor\":\"white\",\"linecolor\":\"white\",\"minorgridcolor\":\"white\",\"startlinecolor\":\"#2a3f5f\"},\"type\":\"carpet\"}],\"choropleth\":[{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"},\"type\":\"choropleth\"}],\"contourcarpet\":[{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"},\"type\":\"contourcarpet\"}],\"contour\":[{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"},\"colorscale\":[[0.0,\"#0d0887\"],[0.1111111111111111,\"#46039f\"],[0.2222222222222222,\"#7201a8\"],[0.3333333333333333,\"#9c179e\"],[0.4444444444444444
" \n",
"var gd = document.getElementById('c7e3fdf9-98d3-4ab6-ab9b-469e1eedffb7');\n",
"var x = new MutationObserver(function (mutations, observer) {{\n",
" var display = window.getComputedStyle(gd).display;\n",
" if (!display || display === 'none') {{\n",
" console.log([gd, 'removed!']);\n",
" Plotly.purge(gd);\n",
" observer.disconnect();\n",
" }}\n",
"}});\n",
"\n",
"// Listen for the removal of the full notebook cells\n",
"var notebookContainer = gd.closest('#notebook-container');\n",
"if (notebookContainer) {{\n",
" x.observe(notebookContainer, {childList: true});\n",
"}}\n",
"\n",
"// Listen for the clearing of the current output cell\n",
"var outputEl = gd.closest('.output');\n",
"if (outputEl) {{\n",
" x.observe(outputEl, {childList: true});\n",
"}}\n",
"\n",
" }) }; }); </script> </div>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"fig = px.bar(data, x=record_col, y=group, color=group,\n",
" labels={\n",
" record_col: 'Number of co-publications',\n",
" group: \"\",\n",
" },\n",
" title=\"Distribution of Domains\", template='plotly')\n",
"fig.update_layout(showlegend=False, xaxis_tickformat='d',font_family=\"Montserrat\")\n",
"fig.update_traces(hovertemplate='%{x:d}')\n",
"fig.add_shape(\n",
" # Rectangle with reference to the plot\n",
" type=\"rect\",\n",
" xref=\"paper\",\n",
" yref=\"paper\",\n",
" x0=0,\n",
" y0=0,\n",
" x1=1.0,\n",
" y1=1.0,\n",
" line=dict(\n",
" color=\"black\",\n",
" width=0.5,\n",
" )\n",
" )\n",
"fig.update_yaxes(\n",
" showgrid=True,\n",
" ticks=\"outside\")\n",
"fig.update_xaxes(\n",
" showgrid=True,\n",
" ticks=\"outside\")\n",
"fig.show(config= dict(displayModeBar = False))"
]
},
{
"cell_type": "code",
"execution_count": 341,
"id": "88742c07",
"metadata": {},
"outputs": [],
"source": [
"# # define a function to divide each row's 'Count' by the value of the first year\n",
"# def divide_by_first_year(group):\n",
"# group['relative_growth'] = group[record_col] / group.loc[group['Publication Year'] == group['Publication Year'].min(), record_col].values[0]\n",
"# return group\n",
"#\n",
"#\n",
"#\n",
"# data = (wos.groupby(group)[record_col].nunique()\n",
"# .unstack(fill_value=0).stack()\n",
"# .reset_index()\n",
"# .rename(columns={0:record_col})\n",
"# .sort_values(ascending=False, by=group+[record_col]))\n",
"#\n",
"# # group by 'Topic'\n",
"# grouped = data.groupby('Domain_English')\n",
"# # apply the function to each group\n",
"# data = grouped.apply(divide_by_first_year).reset_index(drop=True)\n",
"# data['relative_growth'] = data['relative_growth']*100"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "94c5f631",
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": 342,
"id": "8cbe20ab",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Publication Year</th>\n",
" <th>Domain_English</th>\n",
" <th>UT (Unique WOS ID)</th>\n",
" <th>Publication Year_relative_growth</th>\n",
" <th>UT (Unique WOS ID)_relative_growth</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>2011</td>\n",
" <td>Applied Sciences</td>\n",
" <td>490.0</td>\n",
" <td>2011</td>\n",
" <td>0.000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>2012</td>\n",
" <td>Applied Sciences</td>\n",
" <td>593.0</td>\n",
" <td>2011</td>\n",
" <td>21.020408</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>2013</td>\n",
" <td>Applied Sciences</td>\n",
" <td>738.0</td>\n",
" <td>2011</td>\n",
" <td>50.612245</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>2014</td>\n",
" <td>Applied Sciences</td>\n",
" <td>1031.0</td>\n",
" <td>2011</td>\n",
" <td>110.408163</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>2015</td>\n",
" <td>Applied Sciences</td>\n",
" <td>1201.0</td>\n",
" <td>2011</td>\n",
" <td>145.102041</td>\n",
" </tr>\n",
" <tr>\n",
" <th>...</th>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>67</th>\n",
" <td>2018</td>\n",
" <td>Natural Sciences</td>\n",
" <td>753.0</td>\n",
" <td>2011</td>\n",
" <td>316.022099</td>\n",
" </tr>\n",
" <tr>\n",
" <th>68</th>\n",
" <td>2019</td>\n",
" <td>Natural Sciences</td>\n",
" <td>999.0</td>\n",
" <td>2011</td>\n",
" <td>451.933702</td>\n",
" </tr>\n",
" <tr>\n",
" <th>69</th>\n",
" <td>2020</td>\n",
" <td>Natural Sciences</td>\n",
" <td>1232.0</td>\n",
" <td>2011</td>\n",
" <td>580.662983</td>\n",
" </tr>\n",
" <tr>\n",
" <th>70</th>\n",
" <td>2021</td>\n",
" <td>Natural Sciences</td>\n",
" <td>1403.0</td>\n",
" <td>2011</td>\n",
" <td>675.138122</td>\n",
" </tr>\n",
" <tr>\n",
" <th>71</th>\n",
" <td>2022</td>\n",
" <td>Natural Sciences</td>\n",
" <td>1665.0</td>\n",
" <td>2011</td>\n",
" <td>819.889503</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"<p>72 rows × 5 columns</p>\n",
"</div>"
],
"text/plain": [
" Publication Year Domain_English UT (Unique WOS ID) \n",
"0 2011 Applied Sciences 490.0 \\\n",
"1 2012 Applied Sciences 593.0 \n",
"2 2013 Applied Sciences 738.0 \n",
"3 2014 Applied Sciences 1031.0 \n",
"4 2015 Applied Sciences 1201.0 \n",
".. ... ... ... \n",
"67 2018 Natural Sciences 753.0 \n",
"68 2019 Natural Sciences 999.0 \n",
"69 2020 Natural Sciences 1232.0 \n",
"70 2021 Natural Sciences 1403.0 \n",
"71 2022 Natural Sciences 1665.0 \n",
"\n",
" Publication Year_relative_growth UT (Unique WOS ID)_relative_growth \n",
"0 2011 0.000000 \n",
"1 2011 21.020408 \n",
"2 2011 50.612245 \n",
"3 2011 110.408163 \n",
"4 2011 145.102041 \n",
".. ... ... \n",
"67 2011 316.022099 \n",
"68 2011 451.933702 \n",
"69 2011 580.662983 \n",
"70 2011 675.138122 \n",
"71 2011 819.889503 \n",
"\n",
"[72 rows x 5 columns]"
]
},
"execution_count": 342,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"group = ['Publication Year','Domain_English']\n",
"data = (wos.groupby(['Publication Year','Domain_English'])[record_col].nunique(dropna=False).unstack()\n",
" .fillna(0)\n",
" .stack()\n",
" .reset_index()\n",
" .rename(columns={0:record_col}))\n",
"data = data.merge(data[data[record_col]>0].sort_values(by=[\"Publication Year\"], ascending=True).drop_duplicates(subset='Domain_English'),\n",
" on='Domain_English', suffixes=[None,\"_relative_growth\"])\n",
"data[record_col+\"_relative_growth\"] = (data[record_col]-data[record_col+\"_relative_growth\"])/data[record_col+\"_relative_growth\"]*100\n",
"data"
]
},
{
"cell_type": "code",
"execution_count": 343,
"id": "151a7a8a",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Text(0.5, 1.0, 'Yearly output of co-publications')"
]
},
"execution_count": 343,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAjMAAAG1CAYAAAAMU3WaAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAADAdklEQVR4nOzdd1zN+x/A8Vd7SYXIFimRFJJs2eta13XNa3Mv17p0ufbeM1wre17jZu/ruvbeIVLILBSlceqc3x/dzs/Rduko7+fj0YO+n+/3832fb+O8+0wdlUqlQgghhBAii9LVdgBCCCGEEP+FJDNCCCGEyNIkmRFCCCFElibJjBBCCCGyNElmhBBCCJGlSTIjhBBCiCxNkhkhhBBCZGmSzAghhBAiS5NkRgih4XOuoylrdH655GsjsjJJZsRXafjw4Tg4OHDixIlky48fP46DgwMzZ878rHFs374dBwcHgoODP+t90mvRokX4+Ph8lrq3bNnCtGnTPkldM2bMoFKlSri4uODr6/tJ6tSGTp060alTp1TPGTZsGJ6enurPPT09GTZs2CeN4+7du7Rr107jmIODA97e3p/0PkJ8LpLMiK/S8OHDyZs3L6NHj+bdu3caZREREYwePRoHBwf69++vpQi1Y968eURFRX2Wun///XfCwsL+cz3+/v4sX76cBg0asHz5cmrUqPHfg8tCFixYwE8//fRJ69y/fz+XL1/WOLZ582batGnzSe8jxOciyYz4KuXMmZNx48bx+PFj5syZo1E2a9YsQkJCmD59OoaGhlqKUKQkMSFq0qQJFStWJFeuXNoNKJOVLl2aIkWKfPb7uLi4YGNj89nvI8SnIMmM+Gp5enrSrFkz1q1bx9WrVwG4ePEiGzdupH///pQqVQqAJ0+eMHjwYCpVqkS5cuX44Ycf8PPz06grODgYLy8vqlWrRpkyZfDw8MDLy4vXr19r3G/y5Mn88MMPODs7M2LECI06/v7772S7vi5cuICDgwMXL15M8bWcPHmS9u3bU6FCBdzd3fnll194+vSputzb2xsHB4ck173flZBYvmDBAvX/vb298fT05OjRozRs2JBy5crx3XffcfbsWXUdKXWVvd8d4unpyePHj/nzzz/T7Fbbu3cvrVq1wtXVlapVqzJ69GjCw8PV8SR2y/zwww8a3S8fevHiBb/++iseHh64urrSsWNHjdaHmJgYFi5cSMOGDSlbtiz169dn6dKlKJXKFOsEOHv2rPrr1KFDB5ydnalfvz4bNmxQnxMcHIyDgwPbt2/XuPbDLqNECxcupEqVKri6uvLTTz/x6NGjFO//YTdTREQEEyZMoHr16ri4uNC6dWv+/vtvdXl0dDSzZs2ifv36ODk5Ub58ebp27cqtW7eAhGe6YMECIOn3w/vdTC9evGD48OHUrFkTZ2dnvv32W44cOaIRm4ODA+vXr2fEiBFUqlQJV1dXBgwYQGhoqPqchw8f0qdPH9zd3SlXrhxt27bl2LFjKb5eIdJDkhnxVRs5ciS5cuViwoQJxMbGMnbsWFxcXOjevTsAr1694vvvv+fmzZuMGjWKWbNmoVQq6dChAwEBAQBERUXRuXNnAgICGDNmDD4+PnTu3Jk9e/YkafVZv349ZcuWZdGiRXz77bcaZdWrVydv3rzs2LFD47ivry/FihWjQoUKyb4GX19funXrRv78+Zk9ezbDhw/n8uXLtG3blpcvX6b7WWzevBmAb7/9Vv3/xGfw66+/0r59e+bNm4exsTHdu3dXvxmmx4IFC7C2tqZmzZps3ryZvHnzJnveokWLGDx4MC4uLsyfP5++ffty4MABOnXqRHR0NG3atGH06NEAjB49Wv0m/KHIyEjatWvH2bNnGTp0KAsWLMDIyIhu3boRFBSESqWiT58+LF++nDZt2rB48WIaNmzI3LlzGTNmTLpe06BBgyhdurQ6ERk3bpxGQpNeFy9eZM+ePYwePZqJEydy+/ZtOnfuTERERJrXxsfH061bN3bt2kXv3r1ZtGgRxYsXp2/fvly4cAEALy8vtm3bRq9evVixYgXDhw/n7t27/PLLL6hUKtq0aaP+Xkypayk0NJRvv/2WCxcuMGjQILy9vSlYsCB9+/Zl586dGufOmTMHpVLJ7Nmz8fLy4ujRo0yePBkApVJJ7969iYqKYvr06SxatAhLS0t+/PFHHjx4kOFnJ0QifW0HIIQ2WVpaMnbsWPr160e3bt0IDg7G19cXPT09AFavXk1YWBgbN26kYMGCANSoUYPGjRszb9485s+fT1BQEDY2NkybNo3ChQsDULlyZa5evcq5c+c07legQAGGDBmi/jwwMFD9fz09PVq2bMnatWuJjIzEzMyM6Oho9u3bR69evZKNX6lUMnPmTKpVq8asWbPUx8uXL0/jxo3x8fHBy8srXc/CxcUFABsbG/X/ISFZGzt2LC1atFC/trp167J06dIkyVpKSpcujaGhIbly5dKo+33h4eH8/vvvfPfdd+qEBcDe3p4OHTqwbds2OnTogJ2dHQB2dnaULl062br+/PNPdUuQo6MjkPBMWrRowfnz53nw4AGnTp1i9uzZNGnSBICqVatibGzMvHnz6Ny5MyVLlkz1NdWrV0/dula9enVevHjBokWLkgykTYuenh4rVqxQd+kUL16cFi1a4OvrS8eOHVO99p9//uHq1assXLiQunXrAglfn0ePHnHmzBmcnZ2JjIxk5MiRNG7cGIBKlSoRERHB1KlTCQ0NxcbGRn3vlL42K1eu5NWrVxw4cED9c1CzZk26dOnC9OnTadq0Kbq6CX8b29vbM2XKFPW1165dY//+/QC8fPmS+/fv89NPP1GzZk0AnJ2dWbBgAbGxsRl6bkK8T1pmxFevXr16NG7cmPPnzzNkyBCKFi2qLjt9+jSOjo7ky5ePuLg44uLi0NXVpUaNGpw6dQoAR0dHNmzYQMGCBQkKCuLYsWP4+Phw//79JL+gE99YU9K6dWvevXvHoUOHADh06BDv3r1TJxIfCgwMJCQkhKZNm2ocL1KkCK6urkmSqY+hr6+vUb+xsTE1atTg/Pnz/7nu9125coXY2Ngkr6VixYoULFgwQ6/l4sWLFCpUSON5m5iYcODAAdq0acO5c+fQ19enYcOGGtd98803AJw7dw6VSqX+mid+vK9ly5Yan9evX5+QkBCNBDU9ypcvrzE2xdHRkcKFC6fr+V68eBEDAwONritdXV02bdpEv379MDQ0xMfHh8aNG/P8+XPOnDnDpk2bOHr0KEC6E4hz587h6uqqTmQSffPNN4SEhHD//n31sQ8TIhsbG/Wg8jx58mBnZ8eoUaP49ddf2bVrF0qlkuHDh6eZPAqRGmmZEYKEv6z37t2r/msxUVhYGA8ePKBMmTLJXhcVFYWJiQkrV65k8eLFhIWFkSdPHpycnDAxMeHt27ca55uamqYaR9GiRalUqRK+vr7qv86rVKlCvnz5kj0/cTBsnjx5kpTlyZMnydiej5EnTx709TV/VeTOnfuTzEx6X+K4mJRey4fPMjVhYWHkzp071XtZWVmpW+ASWVtbA/D27Vv+/PNPhg8frlH+/hiRD78mifcLDw9X15Meyb3e3Llz8+bNmzSvDQsLw9LSUt0qkpzjx48zefJk7t+/j5mZGaVKlVJ/H6Z3bZnw8HB1q2Nysb8fq4mJicY5urq66vvo6OiwYsUKfv/9dw4dOoSvry8GBgbUrVuXcePGYWFhka54hPiQJDNCpMLc3JxKlSql2FVjaGjIrl27mDp1KkOHDqVVq1bq2TUDBgzg+vXrGb5n69at+e233wgICOD06dOprnVjaWkJoDHAMlFISAhWVlZAwpsIJIyxSHwDj4yMTFc8ySUtoaGh6jfvxLo/HDib3voTJb6RhYaGUrx4cY2ykJCQZN9MU2Jubp7sIONLly5hYWGBhYUFr1+/1ngekDDIFcDKyoratWuzdetWjevz5s3L48ePAXj9+rXGrKLE8Um5c+fWeN7v+3AZAPh/Eve+kJAQXF1d0/U6w8LCUKlU6nsC+Pn5oVKpMDc3p2/fvtStW5clS5ZQuHBhdHR0WL9+PcePH0+
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"g=sns.lineplot(data.sort_values(ascending=True, by=group[-1]),y=record_col,x=group[0], hue=group[-1], marker=\"o\")\n",
"g.set(xticks=list(range(2012,2022+1,2)))\n",
"g.legend(title=None)\n",
"g.set_xlabel(None)\n",
"g.set_ylabel(None)\n",
"g.set_title(\"Yearly output of co-publications\")"
]
},
{
"cell_type": "code",
"execution_count": 344,
"id": "05d0922a",
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.plotly.v1+json": {
"config": {
"displayModeBar": false,
"plotlyServerURL": "https://plot.ly"
},
"data": [
{
"hovertemplate": "%{y:d}",
"legendgroup": "Applied Sciences",
"line": {
"color": "#636efa",
"dash": "solid"
},
"marker": {
"symbol": "circle"
},
"mode": "markers+lines",
"name": "Applied Sciences",
"orientation": "v",
"showlegend": true,
"type": "scatter",
"x": [
2011,
2012,
2013,
2014,
2015,
2016,
2017,
2018,
2019,
2020,
2021,
2022
],
"xaxis": "x",
"y": [
490,
593,
738,
1031,
1201,
1535,
1920,
2808,
3729,
4446,
5295,
6199
],
"yaxis": "y"
},
{
"hovertemplate": "%{y:d}",
"legendgroup": "Arts & Humanities",
"line": {
"color": "#EF553B",
"dash": "solid"
},
"marker": {
"symbol": "circle"
},
"mode": "markers+lines",
"name": "Arts & Humanities",
"orientation": "v",
"showlegend": true,
"type": "scatter",
"x": [
2011,
2012,
2013,
2014,
2015,
2016,
2017,
2018,
2019,
2020,
2021,
2022
],
"xaxis": "x",
"y": [
0,
0,
0,
4,
1,
3,
7,
4,
11,
11,
16,
13
],
"yaxis": "y"
},
{
"hovertemplate": "%{y:d}",
"legendgroup": "Economic & Social Sciences",
"line": {
"color": "#00cc96",
"dash": "solid"
},
"marker": {
"symbol": "circle"
},
"mode": "markers+lines",
"name": "Economic & Social Sciences",
"orientation": "v",
"showlegend": true,
"type": "scatter",
"x": [
2011,
2012,
2013,
2014,
2015,
2016,
2017,
2018,
2019,
2020,
2021,
2022
],
"xaxis": "x",
"y": [
20,
22,
29,
28,
34,
40,
84,
105,
160,
211,
252,
375
],
"yaxis": "y"
},
{
"hovertemplate": "%{y:d}",
"legendgroup": "Health Sciences",
"line": {
"color": "#ab63fa",
"dash": "solid"
},
"marker": {
"symbol": "circle"
},
"mode": "markers+lines",
"name": "Health Sciences",
"orientation": "v",
"showlegend": true,
"type": "scatter",
"x": [
2011,
2012,
2013,
2014,
2015,
2016,
2017,
2018,
2019,
2020,
2021,
2022
],
"xaxis": "x",
"y": [
116,
120,
155,
184,
216,
243,
321,
403,
611,
755,
1035,
1182
],
"yaxis": "y"
},
{
"hovertemplate": "%{y:d}",
"legendgroup": "Multidisciplinary",
"line": {
"color": "#FFA15A",
"dash": "solid"
},
"marker": {
"symbol": "circle"
},
"mode": "markers+lines",
"name": "Multidisciplinary",
"orientation": "v",
"showlegend": true,
"type": "scatter",
"x": [
2011,
2012,
2013,
2014,
2015,
2016,
2017,
2018,
2019,
2020,
2021,
2022
],
"xaxis": "x",
"y": [
15,
21,
43,
52,
57,
64,
75,
76,
83,
97,
115,
149
],
"yaxis": "y"
},
{
"hovertemplate": "%{y:d}",
"legendgroup": "Natural Sciences",
"line": {
"color": "#19d3f3",
"dash": "solid"
},
"marker": {
"symbol": "circle"
},
"mode": "markers+lines",
"name": "Natural Sciences",
"orientation": "v",
"showlegend": true,
"type": "scatter",
"x": [
2011,
2012,
2013,
2014,
2015,
2016,
2017,
2018,
2019,
2020,
2021,
2022
],
"xaxis": "x",
"y": [
181,
223,
298,
318,
380,
437,
568,
753,
999,
1232,
1403,
1665
],
"yaxis": "y"
}
],
"layout": {
"hovermode": "x unified",
"legend": {
"title": {
"text": "Domain"
},
"tracegroupgap": 0
},
"shapes": [
{
"line": {
"color": "black",
"width": 0.5
},
"type": "rect",
"x0": 0,
"x1": 1,
"xref": "paper",
"y0": 0,
"y1": 1,
"yref": "paper"
}
],
"template": {
"data": {
"bar": [
{
"error_x": {
"color": "#2a3f5f"
},
"error_y": {
"color": "#2a3f5f"
},
"marker": {
"line": {
"color": "#E5ECF6",
"width": 0.5
},
"pattern": {
"fillmode": "overlay",
"size": 10,
"solidity": 0.2
}
},
"type": "bar"
}
],
"barpolar": [
{
"marker": {
"line": {
"color": "#E5ECF6",
"width": 0.5
},
"pattern": {
"fillmode": "overlay",
"size": 10,
"solidity": 0.2
}
},
"type": "barpolar"
}
],
"carpet": [
{
"aaxis": {
"endlinecolor": "#2a3f5f",
"gridcolor": "white",
"linecolor": "white",
"minorgridcolor": "white",
"startlinecolor": "#2a3f5f"
},
"baxis": {
"endlinecolor": "#2a3f5f",
"gridcolor": "white",
"linecolor": "white",
"minorgridcolor": "white",
"startlinecolor": "#2a3f5f"
},
"type": "carpet"
}
],
"choropleth": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "choropleth"
}
],
"contour": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "contour"
}
],
"contourcarpet": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "contourcarpet"
}
],
"heatmap": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "heatmap"
}
],
"heatmapgl": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "heatmapgl"
}
],
"histogram": [
{
"marker": {
"pattern": {
"fillmode": "overlay",
"size": 10,
"solidity": 0.2
}
},
"type": "histogram"
}
],
"histogram2d": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "histogram2d"
}
],
"histogram2dcontour": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "histogram2dcontour"
}
],
"mesh3d": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "mesh3d"
}
],
"parcoords": [
{
"line": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "parcoords"
}
],
"pie": [
{
"automargin": true,
"type": "pie"
}
],
"scatter": [
{
"fillpattern": {
"fillmode": "overlay",
"size": 10,
"solidity": 0.2
},
"type": "scatter"
}
],
"scatter3d": [
{
"line": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatter3d"
}
],
"scattercarpet": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattercarpet"
}
],
"scattergeo": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattergeo"
}
],
"scattergl": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattergl"
}
],
"scattermapbox": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattermapbox"
}
],
"scatterpolar": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterpolar"
}
],
"scatterpolargl": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterpolargl"
}
],
"scatterternary": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterternary"
}
],
"surface": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "surface"
}
],
"table": [
{
"cells": {
"fill": {
"color": "#EBF0F8"
},
"line": {
"color": "white"
}
},
"header": {
"fill": {
"color": "#C8D4E3"
},
"line": {
"color": "white"
}
},
"type": "table"
}
]
},
"layout": {
"annotationdefaults": {
"arrowcolor": "#2a3f5f",
"arrowhead": 0,
"arrowwidth": 1
},
"autotypenumbers": "strict",
"coloraxis": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"colorscale": {
"diverging": [
[
0,
"#8e0152"
],
[
0.1,
"#c51b7d"
],
[
0.2,
"#de77ae"
],
[
0.3,
"#f1b6da"
],
[
0.4,
"#fde0ef"
],
[
0.5,
"#f7f7f7"
],
[
0.6,
"#e6f5d0"
],
[
0.7,
"#b8e186"
],
[
0.8,
"#7fbc41"
],
[
0.9,
"#4d9221"
],
[
1,
"#276419"
]
],
"sequential": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"sequentialminus": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
]
},
"colorway": [
"#636efa",
"#EF553B",
"#00cc96",
"#ab63fa",
"#FFA15A",
"#19d3f3",
"#FF6692",
"#B6E880",
"#FF97FF",
"#FECB52"
],
"font": {
"color": "#2a3f5f"
},
"geo": {
"bgcolor": "white",
"lakecolor": "white",
"landcolor": "#E5ECF6",
"showlakes": true,
"showland": true,
"subunitcolor": "white"
},
"hoverlabel": {
"align": "left"
},
"hovermode": "closest",
"mapbox": {
"style": "light"
},
"paper_bgcolor": "white",
"plot_bgcolor": "#E5ECF6",
"polar": {
"angularaxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
},
"bgcolor": "#E5ECF6",
"radialaxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
}
},
"scene": {
"xaxis": {
"backgroundcolor": "#E5ECF6",
"gridcolor": "white",
"gridwidth": 2,
"linecolor": "white",
"showbackground": true,
"ticks": "",
"zerolinecolor": "white"
},
"yaxis": {
"backgroundcolor": "#E5ECF6",
"gridcolor": "white",
"gridwidth": 2,
"linecolor": "white",
"showbackground": true,
"ticks": "",
"zerolinecolor": "white"
},
"zaxis": {
"backgroundcolor": "#E5ECF6",
"gridcolor": "white",
"gridwidth": 2,
"linecolor": "white",
"showbackground": true,
"ticks": "",
"zerolinecolor": "white"
}
},
"shapedefaults": {
"line": {
"color": "#2a3f5f"
}
},
"ternary": {
"aaxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
},
"baxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
},
"bgcolor": "#E5ECF6",
"caxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
}
},
"title": {
"x": 0.05
},
"xaxis": {
"automargin": true,
"gridcolor": "white",
"linecolor": "white",
"ticks": "",
"title": {
"standoff": 15
},
"zerolinecolor": "white",
"zerolinewidth": 2
},
"yaxis": {
"automargin": true,
"gridcolor": "white",
"linecolor": "white",
"ticks": "",
"title": {
"standoff": 15
},
"zerolinecolor": "white",
"zerolinewidth": 2
}
}
},
"title": {
"text": "Yearly output of co-publications"
},
"xaxis": {
"anchor": "y",
"domain": [
0,
1
],
"showgrid": true,
"ticks": "outside",
"title": {
"text": "Publication Year"
}
},
"yaxis": {
"anchor": "x",
"domain": [
0,
1
],
"showgrid": true,
"ticks": "outside",
"title": {
"text": "Number of co-publications"
}
}
}
},
"text/html": [
"<div> <div id=\"bb4d8c75-968e-45d1-91df-a93638d71413\" class=\"plotly-graph-div\" style=\"height:525px; width:100%;\"></div> <script type=\"text/javascript\"> require([\"plotly\"], function(Plotly) { window.PLOTLYENV=window.PLOTLYENV || {}; if (document.getElementById(\"bb4d8c75-968e-45d1-91df-a93638d71413\")) { Plotly.newPlot( \"bb4d8c75-968e-45d1-91df-a93638d71413\", [{\"hovertemplate\":\"%{y:d}\",\"legendgroup\":\"Applied Sciences\",\"line\":{\"color\":\"#636efa\",\"dash\":\"solid\"},\"marker\":{\"symbol\":\"circle\"},\"mode\":\"markers+lines\",\"name\":\"Applied Sciences\",\"orientation\":\"v\",\"showlegend\":true,\"x\":[2011,2012,2013,2014,2015,2016,2017,2018,2019,2020,2021,2022],\"xaxis\":\"x\",\"y\":[490.0,593.0,738.0,1031.0,1201.0,1535.0,1920.0,2808.0,3729.0,4446.0,5295.0,6199.0],\"yaxis\":\"y\",\"type\":\"scatter\"},{\"hovertemplate\":\"%{y:d}\",\"legendgroup\":\"Arts & Humanities\",\"line\":{\"color\":\"#EF553B\",\"dash\":\"solid\"},\"marker\":{\"symbol\":\"circle\"},\"mode\":\"markers+lines\",\"name\":\"Arts & Humanities\",\"orientation\":\"v\",\"showlegend\":true,\"x\":[2011,2012,2013,2014,2015,2016,2017,2018,2019,2020,2021,2022],\"xaxis\":\"x\",\"y\":[0.0,0.0,0.0,4.0,1.0,3.0,7.0,4.0,11.0,11.0,16.0,13.0],\"yaxis\":\"y\",\"type\":\"scatter\"},{\"hovertemplate\":\"%{y:d}\",\"legendgroup\":\"Economic & Social Sciences\",\"line\":{\"color\":\"#00cc96\",\"dash\":\"solid\"},\"marker\":{\"symbol\":\"circle\"},\"mode\":\"markers+lines\",\"name\":\"Economic & Social Sciences\",\"orientation\":\"v\",\"showlegend\":true,\"x\":[2011,2012,2013,2014,2015,2016,2017,2018,2019,2020,2021,2022],\"xaxis\":\"x\",\"y\":[20.0,22.0,29.0,28.0,34.0,40.0,84.0,105.0,160.0,211.0,252.0,375.0],\"yaxis\":\"y\",\"type\":\"scatter\"},{\"hovertemplate\":\"%{y:d}\",\"legendgroup\":\"Health Sciences\",\"line\":{\"color\":\"#ab63fa\",\"dash\":\"solid\"},\"marker\":{\"symbol\":\"circle\"},\"mode\":\"markers+lines\",\"name\":\"Health Sciences\",\"orientation\":\"v\",\"showlegend\":true,\"x\":[2011,2012,2013,2014,2015,2016,2017,2018,2019,2020,2021,2022],\"xaxis\":\"x\",\"y\":[116.0,120.0,155.0,184.0,216.0,243.0,321.0,403.0,611.0,755.0,1035.0,1182.0],\"yaxis\":\"y\",\"type\":\"scatter\"},{\"hovertemplate\":\"%{y:d}\",\"legendgroup\":\"Multidisciplinary\",\"line\":{\"color\":\"#FFA15A\",\"dash\":\"solid\"},\"marker\":{\"symbol\":\"circle\"},\"mode\":\"markers+lines\",\"name\":\"Multidisciplinary\",\"orientation\":\"v\",\"showlegend\":true,\"x\":[2011,2012,2013,2014,2015,2016,2017,2018,2019,2020,2021,2022],\"xaxis\":\"x\",\"y\":[15.0,21.0,43.0,52.0,57.0,64.0,75.0,76.0,83.0,97.0,115.0,149.0],\"yaxis\":\"y\",\"type\":\"scatter\"},{\"hovertemplate\":\"%{y:d}\",\"legendgroup\":\"Natural Sciences\",\"line\":{\"color\":\"#19d3f3\",\"dash\":\"solid\"},\"marker\":{\"symbol\":\"circle\"},\"mode\":\"markers+lines\",\"name\":\"Natural Sciences\",\"orientation\":\"v\",\"showlegend\":true,\"x\":[2011,2012,2013,2014,2015,2016,2017,2018,2019,2020,2021,2022],\"xaxis\":\"x\",\"y\":[181.0,223.0,298.0,318.0,380.0,437.0,568.0,753.0,999.0,1232.0,1403.0,1665.0],\"yaxis\":\"y\",\"type\":\"scatter\"}], {\"template\":{\"data\":{\"barpolar\":[{\"marker\":{\"line\":{\"color\":\"#E5ECF6\",\"width\":0.5},\"pattern\":{\"fillmode\":\"overlay\",\"size\":10,\"solidity\":0.2}},\"type\":\"barpolar\"}],\"bar\":[{\"error_x\":{\"color\":\"#2a3f5f\"},\"error_y\":{\"color\":\"#2a3f5f\"},\"marker\":{\"line\":{\"color\":\"#E5ECF6\",\"width\":0.5},\"pattern\":{\"fillmode\":\"overlay\",\"size\":10,\"solidity\":0.2}},\"type\":\"bar\"}],\"carpet\":[{\"aaxis\":{\"endlinecolor\":\"#2a3f5f\",\"gridcolor\":\"white\",\"linecolor\":\"white\",\"minorgridcolor\":\"white\",\"startlinecolor\":\"#2a3f5f\"},\"baxis\":{\"endlinecolor\":\"#2a3f5f\",\"gridcolor\":\"white\",\"linecolor\":\"white\",\"minorgridcolor\":\"white\",\"startlinecolor\":\"#2a3f5f\"},\"type\":\"carpet\"}],\"choropleth\":[{\"colorbar\":{\"o
" \n",
"var gd = document.getElementById('bb4d8c75-968e-45d1-91df-a93638d71413');\n",
"var x = new MutationObserver(function (mutations, observer) {{\n",
" var display = window.getComputedStyle(gd).display;\n",
" if (!display || display === 'none') {{\n",
" console.log([gd, 'removed!']);\n",
" Plotly.purge(gd);\n",
" observer.disconnect();\n",
" }}\n",
"}});\n",
"\n",
"// Listen for the removal of the full notebook cells\n",
"var notebookContainer = gd.closest('#notebook-container');\n",
"if (notebookContainer) {{\n",
" x.observe(notebookContainer, {childList: true});\n",
"}}\n",
"\n",
"// Listen for the clearing of the current output cell\n",
"var outputEl = gd.closest('.output');\n",
"if (outputEl) {{\n",
" x.observe(outputEl, {childList: true});\n",
"}}\n",
"\n",
" }) }; }); </script> </div>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"fig = px.line(data.sort_values(ascending=[True,True], by=[group[0],group[-1]]),y=record_col,x=group[0], color=group[-1], markers=True, labels={\n",
" record_col: 'Number of co-publications',\n",
" group[-1]: \"Domain\",\n",
" },\n",
" title=\"Yearly output of co-publications\", template='plotly')\n",
"fig.update_traces(hovertemplate='%{y:d}')\n",
"fig.update_layout(hovermode='x unified')\n",
"fig.add_shape(\n",
" # Rectangle with reference to the plot\n",
" type=\"rect\",\n",
" xref=\"paper\",\n",
" yref=\"paper\",\n",
" x0=0,\n",
" y0=0,\n",
" x1=1.0,\n",
" y1=1.0,\n",
" line=dict(\n",
" color=\"black\",\n",
" width=0.5,\n",
" )\n",
" )\n",
"fig.update_yaxes(\n",
" showgrid=True,\n",
" ticks=\"outside\")\n",
"fig.update_xaxes(\n",
" showgrid=True,\n",
" ticks=\"outside\")\n",
"fig.show(config= dict(displayModeBar = False))"
]
},
{
"cell_type": "code",
"execution_count": 345,
"id": "86975f00",
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.plotly.v1+json": {
"config": {
"displayModeBar": false,
"plotlyServerURL": "https://plot.ly"
},
"data": [
{
"hovertemplate": "%{y:.2f}%",
"legendgroup": "Applied Sciences",
"line": {
"color": "#636efa",
"dash": "solid"
},
"marker": {
"symbol": "circle"
},
"mode": "markers+lines",
"name": "Applied Sciences",
"orientation": "v",
"showlegend": true,
"type": "scatter",
"x": [
2011,
2012,
2013,
2014,
2015,
2016,
2017,
2018,
2019,
2020,
2021,
2022
],
"xaxis": "x",
"y": [
0,
21.020408163265305,
50.61224489795918,
110.40816326530611,
145.10204081632654,
213.26530612244898,
291.83673469387753,
473.06122448979596,
661.0204081632653,
807.3469387755102,
980.6122448979592,
1165.1020408163265
],
"yaxis": "y"
},
{
"hovertemplate": "%{y:.2f}%",
"legendgroup": "Arts & Humanities",
"line": {
"color": "#EF553B",
"dash": "solid"
},
"marker": {
"symbol": "circle"
},
"mode": "markers+lines",
"name": "Arts & Humanities",
"orientation": "v",
"showlegend": true,
"type": "scatter",
"x": [
2011,
2012,
2013,
2014,
2015,
2016,
2017,
2018,
2019,
2020,
2021,
2022
],
"xaxis": "x",
"y": [
-100,
-100,
-100,
0,
-75,
-25,
75,
0,
175,
175,
300,
225
],
"yaxis": "y"
},
{
"hovertemplate": "%{y:.2f}%",
"legendgroup": "Economic & Social Sciences",
"line": {
"color": "#00cc96",
"dash": "solid"
},
"marker": {
"symbol": "circle"
},
"mode": "markers+lines",
"name": "Economic & Social Sciences",
"orientation": "v",
"showlegend": true,
"type": "scatter",
"x": [
2011,
2012,
2013,
2014,
2015,
2016,
2017,
2018,
2019,
2020,
2021,
2022
],
"xaxis": "x",
"y": [
0,
10,
45,
40,
70,
100,
320,
425,
700,
955.0000000000001,
1160,
1775
],
"yaxis": "y"
},
{
"hovertemplate": "%{y:.2f}%",
"legendgroup": "Health Sciences",
"line": {
"color": "#ab63fa",
"dash": "solid"
},
"marker": {
"symbol": "circle"
},
"mode": "markers+lines",
"name": "Health Sciences",
"orientation": "v",
"showlegend": true,
"type": "scatter",
"x": [
2011,
2012,
2013,
2014,
2015,
2016,
2017,
2018,
2019,
2020,
2021,
2022
],
"xaxis": "x",
"y": [
0,
3.4482758620689653,
33.62068965517241,
58.620689655172406,
86.20689655172413,
109.48275862068965,
176.72413793103448,
247.41379310344826,
426.72413793103453,
550.8620689655172,
792.2413793103449,
918.9655172413793
],
"yaxis": "y"
},
{
"hovertemplate": "%{y:.2f}%",
"legendgroup": "Multidisciplinary",
"line": {
"color": "#FFA15A",
"dash": "solid"
},
"marker": {
"symbol": "circle"
},
"mode": "markers+lines",
"name": "Multidisciplinary",
"orientation": "v",
"showlegend": true,
"type": "scatter",
"x": [
2011,
2012,
2013,
2014,
2015,
2016,
2017,
2018,
2019,
2020,
2021,
2022
],
"xaxis": "x",
"y": [
0,
40,
186.66666666666666,
246.66666666666669,
280,
326.6666666666667,
400,
406.66666666666663,
453.3333333333333,
546.6666666666666,
666.6666666666667,
893.3333333333334
],
"yaxis": "y"
},
{
"hovertemplate": "%{y:.2f}%",
"legendgroup": "Natural Sciences",
"line": {
"color": "#19d3f3",
"dash": "solid"
},
"marker": {
"symbol": "circle"
},
"mode": "markers+lines",
"name": "Natural Sciences",
"orientation": "v",
"showlegend": true,
"type": "scatter",
"x": [
2011,
2012,
2013,
2014,
2015,
2016,
2017,
2018,
2019,
2020,
2021,
2022
],
"xaxis": "x",
"y": [
0,
23.204419889502763,
64.64088397790056,
75.69060773480662,
109.94475138121547,
141.43646408839777,
213.8121546961326,
316.0220994475138,
451.9337016574585,
580.6629834254144,
675.1381215469613,
819.889502762431
],
"yaxis": "y"
}
],
"layout": {
"font": {
"family": "Montserrat"
},
"hovermode": "x unified",
"legend": {
"title": {
"text": "Domain"
},
"tracegroupgap": 0
},
"shapes": [
{
"line": {
"color": "black",
"width": 0.5
},
"type": "rect",
"x0": 0,
"x1": 1,
"xref": "paper",
"y0": 0,
"y1": 1,
"yref": "paper"
}
],
"template": {
"data": {
"bar": [
{
"error_x": {
"color": "#2a3f5f"
},
"error_y": {
"color": "#2a3f5f"
},
"marker": {
"line": {
"color": "#E5ECF6",
"width": 0.5
},
"pattern": {
"fillmode": "overlay",
"size": 10,
"solidity": 0.2
}
},
"type": "bar"
}
],
"barpolar": [
{
"marker": {
"line": {
"color": "#E5ECF6",
"width": 0.5
},
"pattern": {
"fillmode": "overlay",
"size": 10,
"solidity": 0.2
}
},
"type": "barpolar"
}
],
"carpet": [
{
"aaxis": {
"endlinecolor": "#2a3f5f",
"gridcolor": "white",
"linecolor": "white",
"minorgridcolor": "white",
"startlinecolor": "#2a3f5f"
},
"baxis": {
"endlinecolor": "#2a3f5f",
"gridcolor": "white",
"linecolor": "white",
"minorgridcolor": "white",
"startlinecolor": "#2a3f5f"
},
"type": "carpet"
}
],
"choropleth": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "choropleth"
}
],
"contour": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "contour"
}
],
"contourcarpet": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "contourcarpet"
}
],
"heatmap": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "heatmap"
}
],
"heatmapgl": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "heatmapgl"
}
],
"histogram": [
{
"marker": {
"pattern": {
"fillmode": "overlay",
"size": 10,
"solidity": 0.2
}
},
"type": "histogram"
}
],
"histogram2d": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "histogram2d"
}
],
"histogram2dcontour": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "histogram2dcontour"
}
],
"mesh3d": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "mesh3d"
}
],
"parcoords": [
{
"line": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "parcoords"
}
],
"pie": [
{
"automargin": true,
"type": "pie"
}
],
"scatter": [
{
"fillpattern": {
"fillmode": "overlay",
"size": 10,
"solidity": 0.2
},
"type": "scatter"
}
],
"scatter3d": [
{
"line": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatter3d"
}
],
"scattercarpet": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattercarpet"
}
],
"scattergeo": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattergeo"
}
],
"scattergl": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattergl"
}
],
"scattermapbox": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattermapbox"
}
],
"scatterpolar": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterpolar"
}
],
"scatterpolargl": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterpolargl"
}
],
"scatterternary": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterternary"
}
],
"surface": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "surface"
}
],
"table": [
{
"cells": {
"fill": {
"color": "#EBF0F8"
},
"line": {
"color": "white"
}
},
"header": {
"fill": {
"color": "#C8D4E3"
},
"line": {
"color": "white"
}
},
"type": "table"
}
]
},
"layout": {
"annotationdefaults": {
"arrowcolor": "#2a3f5f",
"arrowhead": 0,
"arrowwidth": 1
},
"autotypenumbers": "strict",
"coloraxis": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"colorscale": {
"diverging": [
[
0,
"#8e0152"
],
[
0.1,
"#c51b7d"
],
[
0.2,
"#de77ae"
],
[
0.3,
"#f1b6da"
],
[
0.4,
"#fde0ef"
],
[
0.5,
"#f7f7f7"
],
[
0.6,
"#e6f5d0"
],
[
0.7,
"#b8e186"
],
[
0.8,
"#7fbc41"
],
[
0.9,
"#4d9221"
],
[
1,
"#276419"
]
],
"sequential": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"sequentialminus": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
]
},
"colorway": [
"#636efa",
"#EF553B",
"#00cc96",
"#ab63fa",
"#FFA15A",
"#19d3f3",
"#FF6692",
"#B6E880",
"#FF97FF",
"#FECB52"
],
"font": {
"color": "#2a3f5f"
},
"geo": {
"bgcolor": "white",
"lakecolor": "white",
"landcolor": "#E5ECF6",
"showlakes": true,
"showland": true,
"subunitcolor": "white"
},
"hoverlabel": {
"align": "left"
},
"hovermode": "closest",
"mapbox": {
"style": "light"
},
"paper_bgcolor": "white",
"plot_bgcolor": "#E5ECF6",
"polar": {
"angularaxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
},
"bgcolor": "#E5ECF6",
"radialaxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
}
},
"scene": {
"xaxis": {
"backgroundcolor": "#E5ECF6",
"gridcolor": "white",
"gridwidth": 2,
"linecolor": "white",
"showbackground": true,
"ticks": "",
"zerolinecolor": "white"
},
"yaxis": {
"backgroundcolor": "#E5ECF6",
"gridcolor": "white",
"gridwidth": 2,
"linecolor": "white",
"showbackground": true,
"ticks": "",
"zerolinecolor": "white"
},
"zaxis": {
"backgroundcolor": "#E5ECF6",
"gridcolor": "white",
"gridwidth": 2,
"linecolor": "white",
"showbackground": true,
"ticks": "",
"zerolinecolor": "white"
}
},
"shapedefaults": {
"line": {
"color": "#2a3f5f"
}
},
"ternary": {
"aaxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
},
"baxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
},
"bgcolor": "#E5ECF6",
"caxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
}
},
"title": {
"x": 0.05
},
"xaxis": {
"automargin": true,
"gridcolor": "white",
"linecolor": "white",
"ticks": "",
"title": {
"standoff": 15
},
"zerolinecolor": "white",
"zerolinewidth": 2
},
"yaxis": {
"automargin": true,
"gridcolor": "white",
"linecolor": "white",
"ticks": "",
"title": {
"standoff": 15
},
"zerolinecolor": "white",
"zerolinewidth": 2
}
}
},
"title": {
"text": "Relative growth in the output of co-publications"
},
"xaxis": {
"anchor": "y",
"domain": [
0,
1
],
"showgrid": true,
"ticks": "outside",
"title": {
"text": "Publication Year"
}
},
"yaxis": {
"anchor": "x",
"domain": [
0,
1
],
"showgrid": true,
"tickformat": "d",
"ticks": "outside",
"title": {
"text": "Rel. growth<br>in co-publications (%)"
},
"zeroline": true,
"zerolinecolor": "grey",
"zerolinewidth": 0.5
}
}
},
"text/html": [
"<div> <div id=\"a4421d07-0235-49fa-a5de-4d127b46d79c\" class=\"plotly-graph-div\" style=\"height:525px; width:100%;\"></div> <script type=\"text/javascript\"> require([\"plotly\"], function(Plotly) { window.PLOTLYENV=window.PLOTLYENV || {}; if (document.getElementById(\"a4421d07-0235-49fa-a5de-4d127b46d79c\")) { Plotly.newPlot( \"a4421d07-0235-49fa-a5de-4d127b46d79c\", [{\"hovertemplate\":\"%{y:.2f}%\",\"legendgroup\":\"Applied Sciences\",\"line\":{\"color\":\"#636efa\",\"dash\":\"solid\"},\"marker\":{\"symbol\":\"circle\"},\"mode\":\"markers+lines\",\"name\":\"Applied Sciences\",\"orientation\":\"v\",\"showlegend\":true,\"x\":[2011,2012,2013,2014,2015,2016,2017,2018,2019,2020,2021,2022],\"xaxis\":\"x\",\"y\":[0.0,21.020408163265305,50.61224489795918,110.40816326530611,145.10204081632654,213.26530612244898,291.83673469387753,473.06122448979596,661.0204081632653,807.3469387755102,980.6122448979592,1165.1020408163265],\"yaxis\":\"y\",\"type\":\"scatter\"},{\"hovertemplate\":\"%{y:.2f}%\",\"legendgroup\":\"Arts & Humanities\",\"line\":{\"color\":\"#EF553B\",\"dash\":\"solid\"},\"marker\":{\"symbol\":\"circle\"},\"mode\":\"markers+lines\",\"name\":\"Arts & Humanities\",\"orientation\":\"v\",\"showlegend\":true,\"x\":[2011,2012,2013,2014,2015,2016,2017,2018,2019,2020,2021,2022],\"xaxis\":\"x\",\"y\":[-100.0,-100.0,-100.0,0.0,-75.0,-25.0,75.0,0.0,175.0,175.0,300.0,225.0],\"yaxis\":\"y\",\"type\":\"scatter\"},{\"hovertemplate\":\"%{y:.2f}%\",\"legendgroup\":\"Economic & Social Sciences\",\"line\":{\"color\":\"#00cc96\",\"dash\":\"solid\"},\"marker\":{\"symbol\":\"circle\"},\"mode\":\"markers+lines\",\"name\":\"Economic & Social Sciences\",\"orientation\":\"v\",\"showlegend\":true,\"x\":[2011,2012,2013,2014,2015,2016,2017,2018,2019,2020,2021,2022],\"xaxis\":\"x\",\"y\":[0.0,10.0,45.0,40.0,70.0,100.0,320.0,425.0,700.0,955.0000000000001,1160.0,1775.0],\"yaxis\":\"y\",\"type\":\"scatter\"},{\"hovertemplate\":\"%{y:.2f}%\",\"legendgroup\":\"Health Sciences\",\"line\":{\"color\":\"#ab63fa\",\"dash\":\"solid\"},\"marker\":{\"symbol\":\"circle\"},\"mode\":\"markers+lines\",\"name\":\"Health Sciences\",\"orientation\":\"v\",\"showlegend\":true,\"x\":[2011,2012,2013,2014,2015,2016,2017,2018,2019,2020,2021,2022],\"xaxis\":\"x\",\"y\":[0.0,3.4482758620689653,33.62068965517241,58.620689655172406,86.20689655172413,109.48275862068965,176.72413793103448,247.41379310344826,426.72413793103453,550.8620689655172,792.2413793103449,918.9655172413793],\"yaxis\":\"y\",\"type\":\"scatter\"},{\"hovertemplate\":\"%{y:.2f}%\",\"legendgroup\":\"Multidisciplinary\",\"line\":{\"color\":\"#FFA15A\",\"dash\":\"solid\"},\"marker\":{\"symbol\":\"circle\"},\"mode\":\"markers+lines\",\"name\":\"Multidisciplinary\",\"orientation\":\"v\",\"showlegend\":true,\"x\":[2011,2012,2013,2014,2015,2016,2017,2018,2019,2020,2021,2022],\"xaxis\":\"x\",\"y\":[0.0,40.0,186.66666666666666,246.66666666666669,280.0,326.6666666666667,400.0,406.66666666666663,453.3333333333333,546.6666666666666,666.6666666666667,893.3333333333334],\"yaxis\":\"y\",\"type\":\"scatter\"},{\"hovertemplate\":\"%{y:.2f}%\",\"legendgroup\":\"Natural Sciences\",\"line\":{\"color\":\"#19d3f3\",\"dash\":\"solid\"},\"marker\":{\"symbol\":\"circle\"},\"mode\":\"markers+lines\",\"name\":\"Natural Sciences\",\"orientation\":\"v\",\"showlegend\":true,\"x\":[2011,2012,2013,2014,2015,2016,2017,2018,2019,2020,2021,2022],\"xaxis\":\"x\",\"y\":[0.0,23.204419889502763,64.64088397790056,75.69060773480662,109.94475138121547,141.43646408839777,213.8121546961326,316.0220994475138,451.9337016574585,580.6629834254144,675.1381215469613,819.889502762431],\"yaxis\":\"y\",\"type\":\"scatter\"}], {\"template\":{\"data\":{\"barpolar\":[{\"marker\":{\"line\":{\"color\":\"#E5ECF6\",\"width\":0.5},\"pattern\":{\"fillmode\":\"overlay\",\"size\":10,\"solidity\":0.2}},\"type\":\"barpolar\"}],\"bar\":[{\"error_x\":{\"color\":\"#2a3f5f\"},\"
" \n",
"var gd = document.getElementById('a4421d07-0235-49fa-a5de-4d127b46d79c');\n",
"var x = new MutationObserver(function (mutations, observer) {{\n",
" var display = window.getComputedStyle(gd).display;\n",
" if (!display || display === 'none') {{\n",
" console.log([gd, 'removed!']);\n",
" Plotly.purge(gd);\n",
" observer.disconnect();\n",
" }}\n",
"}});\n",
"\n",
"// Listen for the removal of the full notebook cells\n",
"var notebookContainer = gd.closest('#notebook-container');\n",
"if (notebookContainer) {{\n",
" x.observe(notebookContainer, {childList: true});\n",
"}}\n",
"\n",
"// Listen for the clearing of the current output cell\n",
"var outputEl = gd.closest('.output');\n",
"if (outputEl) {{\n",
" x.observe(outputEl, {childList: true});\n",
"}}\n",
"\n",
" }) }; }); </script> </div>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"fig = px.line(data.sort_values(ascending=[True,True], by=[group[0],group[-1]]),y=record_col+\"_relative_growth\",x=group[0], color=group[-1], markers=True, labels={\n",
" record_col+\"_relative_growth\": 'Rel. growth<br>in co-publications (%)',\n",
" group[-1]: \"Domain\",\n",
" },\n",
" title=\"Relative growth in the output of co-publications\", template='plotly')\n",
"fig.update_traces(hovertemplate='%{y:.2f}%')\n",
"\n",
"fig.update_layout(hovermode='x unified',yaxis_tickformat='d',font_family=\"Montserrat\")\n",
"fig.add_shape(\n",
" # Rectangle with reference to the plot\n",
" type=\"rect\",\n",
" xref=\"paper\",\n",
" yref=\"paper\",\n",
" x0=0,\n",
" y0=0,\n",
" x1=1.0,\n",
" y1=1.0,\n",
" line=dict(\n",
" color=\"black\",\n",
" width=0.5,\n",
" )\n",
" )\n",
"fig.update_yaxes(\n",
" showgrid=True,\n",
" ticks=\"outside\")\n",
"fig.update_xaxes(\n",
" showgrid=True,\n",
" ticks=\"outside\")\n",
"fig.update_yaxes(zeroline=True, zerolinewidth=0.5, zerolinecolor='grey')\n",
"fig.show(config= dict(displayModeBar = False))"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "3a07c24d",
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": 346,
"id": "329b6889",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th>Publication Year</th>\n",
" <th>2011</th>\n",
" <th>2012</th>\n",
" <th>2013</th>\n",
" <th>2014</th>\n",
" <th>2015</th>\n",
" <th>2016</th>\n",
" <th>2017</th>\n",
" <th>2018</th>\n",
" <th>2019</th>\n",
" <th>2020</th>\n",
" <th>2021</th>\n",
" <th>2022</th>\n",
" </tr>\n",
" <tr>\n",
" <th>Domain_English</th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>Applied Sciences</th>\n",
" <td>490</td>\n",
" <td>593</td>\n",
" <td>738</td>\n",
" <td>1031</td>\n",
" <td>1201</td>\n",
" <td>1535</td>\n",
" <td>1920</td>\n",
" <td>2808</td>\n",
" <td>3729</td>\n",
" <td>4446</td>\n",
" <td>5295</td>\n",
" <td>6199</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Arts &amp; Humanities</th>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>4</td>\n",
" <td>1</td>\n",
" <td>3</td>\n",
" <td>7</td>\n",
" <td>4</td>\n",
" <td>11</td>\n",
" <td>11</td>\n",
" <td>16</td>\n",
" <td>13</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Economic &amp; Social Sciences</th>\n",
" <td>20</td>\n",
" <td>22</td>\n",
" <td>29</td>\n",
" <td>28</td>\n",
" <td>34</td>\n",
" <td>40</td>\n",
" <td>84</td>\n",
" <td>105</td>\n",
" <td>160</td>\n",
" <td>211</td>\n",
" <td>252</td>\n",
" <td>375</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Health Sciences</th>\n",
" <td>116</td>\n",
" <td>120</td>\n",
" <td>155</td>\n",
" <td>184</td>\n",
" <td>216</td>\n",
" <td>243</td>\n",
" <td>321</td>\n",
" <td>403</td>\n",
" <td>611</td>\n",
" <td>755</td>\n",
" <td>1035</td>\n",
" <td>1182</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Multidisciplinary</th>\n",
" <td>15</td>\n",
" <td>21</td>\n",
" <td>43</td>\n",
" <td>52</td>\n",
" <td>57</td>\n",
" <td>64</td>\n",
" <td>75</td>\n",
" <td>76</td>\n",
" <td>83</td>\n",
" <td>97</td>\n",
" <td>115</td>\n",
" <td>149</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Natural Sciences</th>\n",
" <td>181</td>\n",
" <td>223</td>\n",
" <td>298</td>\n",
" <td>318</td>\n",
" <td>380</td>\n",
" <td>437</td>\n",
" <td>568</td>\n",
" <td>753</td>\n",
" <td>999</td>\n",
" <td>1232</td>\n",
" <td>1403</td>\n",
" <td>1665</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
"Publication Year 2011 2012 2013 2014 2015 2016 2017 2018 \n",
"Domain_English \n",
"Applied Sciences 490 593 738 1031 1201 1535 1920 2808 \\\n",
"Arts & Humanities 0 0 0 4 1 3 7 4 \n",
"Economic & Social Sciences 20 22 29 28 34 40 84 105 \n",
"Health Sciences 116 120 155 184 216 243 321 403 \n",
"Multidisciplinary 15 21 43 52 57 64 75 76 \n",
"Natural Sciences 181 223 298 318 380 437 568 753 \n",
"\n",
"Publication Year 2019 2020 2021 2022 \n",
"Domain_English \n",
"Applied Sciences 3729 4446 5295 6199 \n",
"Arts & Humanities 11 11 16 13 \n",
"Economic & Social Sciences 160 211 252 375 \n",
"Health Sciences 611 755 1035 1182 \n",
"Multidisciplinary 83 97 115 149 \n",
"Natural Sciences 999 1232 1403 1665 "
]
},
"execution_count": 346,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"pivot_data = pd.pivot_table(data, values=record_col, index=['Domain_English'],\n",
"\n",
" columns=['Publication Year'], fill_value=0)\n",
"pivot_data"
]
},
{
"cell_type": "code",
"execution_count": 347,
"id": "100f3002",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[Text(0.5, 33.249999999999986, ''), Text(79.74999999999999, 0.5, '')]"
]
},
"execution_count": 347,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA3kAAAH9CAYAAACnTrUyAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzddVxU2xbA8R/dIAIKBgYqYmB3d1/r2nHt7u7u7lZssbC7u1tRsVAMFATphvfHyOgIAopIvPX9fObz3j1nz541xzPDrLP23kctKioqCiGEEEIIIYQQaYJ6cgcghBBCCCGEEOLPkSRPCCGEEEIIIdIQSfKEEEIIIYQQIg2RJE8IIYQQQggh0hBJ8oQQQgghhBAiDZEkTwghhBBCCCHSEEnyhBBCCCGEECINkSRPCCGEEEIIIdIQSfKEEEIIIYQQIg3RTO4AhBBCCCGEEOJ7YZ4vk7R/LfOcSdp/cpMkT4i/IJuZfXKH8Mtef75PbotiyR3Gb3nmcQt7yzLJHcYvu+9+hcpZqid3GL/l7NuT1LWum9xh/LLDbw7TMXvT5A7jtzi47mZ09tbJHcYvm+q6laMZWyZ3GL+l9kdHPlaunNxh/LKMZ8/iPzJ1nueG03cTdHBecofxy/TqD0ryJCWppPXk5/+FJHlCCCGEEEKIlCUyIrkjSNUkyRNCCCGEEEKkLFGRyR1BqiYLrwghhBBCCCFEGiKVPCGEEEIIIUTKEimVvMSQSp4QQgghhBBCpCFSyRNCCCGEEEKkKFEyJy9RpJInhBBCCCGEEGmIJHlCCCGEEEKIlCUyMmkfibB3717q1q1LwYIFqVevHkeOHFHue/v2Ld27d6do0aKUL1+eBQsWEBGhejuILVu2UK1aNezt7WndujXOzs4q+xPSR3wkyRNCCCGEEEKIBNi3bx+jR4+mTZs2HDp0iPr16zNo0CDu3LlDWFgYnTt3BsDR0ZEJEyawbds2li5dqnz+nj17mDVrFv3798fJyYksWbLQsWNHvLy8ABLUR0LInDwhhBBCCCFEypIC5+RFRUWxcOFC2rdvT5s2bQDo2bMnN2/e5Pr167x7947379+zY8cOTExMyJMnD58/f2bWrFn06NEDbW1tVqxYQdu2bfnnn38AmDZtGtWrV2fnzp10796dY8eOxdtHQkglTwghhBBCCJGyREYk7eM3vHr1infv3tGgQQOV7WvXrqV79+7cvHmT/PnzY2JiotxXunRp/P39efz4MZ8/f8bV1ZUyZcoo92tqalK8eHFu3LgBEG8fCSVJnhBCCCGEEELE49WrVwAEBgbSuXNnypQpQ7NmzTh9+jQA7u7uWFpaqjwnQ4YMAHz48AF3d3cArKysYrSJ3hdfHwklwzWFEEIIIYQQKUsSD9esVq1anPtPnToVY5u/vz8Aw4cPp0+fPgwZMoRjx47Rq1cvHBwcCA4OxtjYWOU5Ojo6AISEhBAUFAQQY8iljo4OISEhAPH2kVCS5AkhhBBCCCFEPLS0tADo3LkzjRs3BsDOzg5nZ2ccHBzQ1dUlNDRU5TnRiZm+vj66uroAsbbR09MDiLePhJIkTwghhBBCCJGyJPI2B/GJrVIXn4wZMwKQJ08ele25cuXi7NmzlCxZEhcXF5V9nz59Uj43epjmp0+fsLGxUWkT3belpWWcfSSUzMkTQgghhBBCiHjkz58fAwMD7t27p7LdxcUFa2trSpQogbOzs3JYJ8DVq1cxMDAgb968mJmZkSNHDq5du6bcHx4ezs2bNylRogRAvH0klCR5QgghhBBCiBQlKioySR+/Q1dXly5durB06VIOHjzImzdvWL58OZcuXaJjx45Ur14dCwsLBgwYwJMnTzh58iTz5s2jU6dOynl4nTp1wsHBgT179vD8+XNGjRpFcHAw//77L0CC+kgIGa4phBBCCCGEEAnQq1cv9PT0mD9/Ph8/fsTGxobFixdTqlQpANasWcPEiRNp3rw5JiYmtG7dml69eimf37x5c/z8/FiwYAFfvnyhQIECODg4kD59ekCxyEp8fSSEJHlCCCGEEEKIlCWJ5+QlRseOHenYsWOs+7Jly8a6devifH7nzp3p3LnzT/cnpI/4SJInhBBCCCGESFmS+BYKaZ3MyRNCCCGEEEKINEQqeUIIIYQQQoiUJTIiuSNI1aSSJ4QQQgghhBBpiFTyhBBCCCGEECmLzMlLFKnkCSGEEEIIIUQaIpU8IYQQQgghRMqSgm+hkBpIJU8IIYQQQggh0hCp5AkhhBBCCCFSFpmTlyiS5AkhhBBCCCFSFhmumSiS5AmRQq3cMI/89naUL1JHua1qzYr0H9qdvPny4O31hUP7jjN3+hICA4KUbTQ0NBgwrAf/tmqIqakJD+49Zur4udy99SDJYtXW0ebuqwtoaal+pQQEBFI4ewUAmrRsQOdebcmWIyuf3D1wcjzI8gXriIj4dh+cXHlyMGx8f4qWLERkZCRnTlxk9qRFeH76nCRxFy9bhHVOy366f9ns1ayYu44K1cvSc0hnbPLkwNvrC/u3H2bVgvWEh4Ur2+bOa8PAcb0pWCQ/oaGhXDl3nXmTluDl6f3H47awMsfh5BrGdBnP3Sv3lNszZ89E7/E9sS9ZkIiICM4ePM/KaasJ9A9UtsmW25oeo7tRoHh+IqOiuHLyKqumrcbLI/Y4G3dsRItu/9KyTNtEx21macbyE8uZ3HUyD65+Ox8LlS1E6wGtyW6XnbCQMB7ffMza6Wtxf+2ubKOrr0unkZ0oW6csegZ6PLz2kFWTVvHu5btYX6tk9ZJMWDeButZ1Ex03gKlleqYcX8CibjN5evWRcvvInVPIU8IuRvuJDYbh+uAFADZF8/DvsDZkK2BDSGAwNw5dxmnOVoIDgpXtmwxuRYO+/8boZ/vUDRxdvf+34za2TE+/4zPZ0m0er64+Vm63rVqEqv2akNEuK4Fefjw8fI2Tc3cSGhiibGNoYUL1Qc3IVaEg+qZGeL78wIWVB3hw8KrKa9j/U4bKfRqT3joD3m89OL98P3d2X/j1YNXUyNquGtYda6CXLSOhnj58OnqLZ7N2EuGv+I4zLZWX3KNaYpzfmjCfQD4eucGz6duJ+O5YaujrkGdsayzrl0LDQBfvK495Mm4jAS8+qLTJNeRfLBuURiu9If5P3HCZsQOvCw9/Pe6vses3b45egwZoWFgQ7uZGoKMjwSdPom5piYWj40+fGnTkCL4zZwKgmTs3hp07o5U3L6ipEebigv+qVYQ/e6Zsr25ujmGPHuiULAkaGoQ9eoT/2rWEP336e7F/R7fNUNQz5yRwVs9Y92uVrYdOg04EzOxB1BePWNuoZ8qJXq/phDitIPz2GZV9mkWroFWhAepmVkT5fyHs1mnCTu/+rYpNSFg45UY5EP5DIqCnrcmV6Z0BOH7vBevP3MP10xeMdLUplScz/euVwsxIX9n+nqs7iw/f4OGbT+jpaFLRLhv96pVUaXPV5S09Vh6KEUMFO2sWd6kTY3t87j18zIIV63n4+Cl6enqUL1WMwX26YGaaTqVdeHgE7XsOplzp4vTurPod/ML1DfOWreXG7QdoampQqlghBvToSLasmZVtQkNDWbp2CwePn+bLF19yZs9Kxzb/Urd65V+OWaQ+kuT9Jf7+/pQrVw4DAwPOnTuHlpbWH+2/atWqNG7cmL59++Lk5MTIkSN5mogv/MWLF7Nnzx5Onz790zb3799n6dKl3Llzh6CgIDJlykTNmjXp3r07hoaGCXodW1tbpk+fTpMmTX471rSocbN61K5fHbc3337A1qpXlRXr53H10k16dx6KtpYWfYd0o1jJNTSt016ZLI2dMoQWbZowc/IC3N68p2vPdmxxWkXdys15/cotSeLNk9cGLS1NBvcYwxvXb68REaH44/tft1aMmTqEI/tPMnPiQtKbmdJ/eA/yFshNn47DAMiQ0ZxNe1byxvUtQ3qNRVdPl8Gje7Nh1zIaVm1DeHh4rK+dGI/vP6Vt3S4xtvcZ0Z38he04sucEZSqVZNGGWezfcYSFU1eQI3c2+o/qgXkGMyYNVfwwS29uyurdi/n47hNj+09GR0+HAWN6s3zrfNr
"text/plain": [
"<Figure size 900x600 with 2 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"f, ax = plt.subplots(figsize=(9, 6))\n",
"g = sns.heatmap(pivot_data, annot=True, fmt=\"d\", linewidths=.5, ax=ax)\n",
"g.set(xlabel=\"\", ylabel=\"\")"
]
},
{
"cell_type": "code",
"execution_count": 348,
"id": "a8d24046",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th>Publication Year</th>\n",
" <th>2011</th>\n",
" <th>2012</th>\n",
" <th>2013</th>\n",
" <th>2014</th>\n",
" <th>2015</th>\n",
" <th>2016</th>\n",
" <th>2017</th>\n",
" <th>2018</th>\n",
" <th>2019</th>\n",
" <th>2020</th>\n",
" <th>2021</th>\n",
" <th>2022</th>\n",
" </tr>\n",
" <tr>\n",
" <th>Domain_English</th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>Applied Sciences</th>\n",
" <td>59.610706</td>\n",
" <td>60.572012</td>\n",
" <td>58.432304</td>\n",
" <td>63.760049</td>\n",
" <td>63.578613</td>\n",
" <td>66.106804</td>\n",
" <td>64.537815</td>\n",
" <td>67.678959</td>\n",
" <td>66.672626</td>\n",
" <td>65.847156</td>\n",
" <td>65.241498</td>\n",
" <td>64.687467</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Arts &amp; Humanities</th>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>0.247372</td>\n",
" <td>0.052938</td>\n",
" <td>0.129199</td>\n",
" <td>0.235294</td>\n",
" <td>0.096409</td>\n",
" <td>0.196674</td>\n",
" <td>0.162915</td>\n",
" <td>0.197141</td>\n",
" <td>0.135657</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Economic &amp; Social Sciences</th>\n",
" <td>2.433090</td>\n",
" <td>2.247191</td>\n",
" <td>2.296120</td>\n",
" <td>1.731602</td>\n",
" <td>1.799894</td>\n",
" <td>1.722653</td>\n",
" <td>2.823529</td>\n",
" <td>2.530730</td>\n",
" <td>2.860719</td>\n",
" <td>3.125000</td>\n",
" <td>3.104978</td>\n",
" <td>3.913180</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Health Sciences</th>\n",
" <td>14.111922</td>\n",
" <td>12.257406</td>\n",
" <td>12.272367</td>\n",
" <td>11.379097</td>\n",
" <td>11.434621</td>\n",
" <td>10.465116</td>\n",
" <td>10.789916</td>\n",
" <td>9.713184</td>\n",
" <td>10.924370</td>\n",
" <td>11.181872</td>\n",
" <td>12.752587</td>\n",
" <td>12.334342</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Multidisciplinary</th>\n",
" <td>1.824818</td>\n",
" <td>2.145046</td>\n",
" <td>3.404592</td>\n",
" <td>3.215832</td>\n",
" <td>3.017470</td>\n",
" <td>2.756245</td>\n",
" <td>2.521008</td>\n",
" <td>1.831767</td>\n",
" <td>1.483998</td>\n",
" <td>1.436611</td>\n",
" <td>1.416954</td>\n",
" <td>1.554837</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Natural Sciences</th>\n",
" <td>22.019465</td>\n",
" <td>22.778345</td>\n",
" <td>23.594616</td>\n",
" <td>19.666048</td>\n",
" <td>20.116464</td>\n",
" <td>18.819983</td>\n",
" <td>19.092437</td>\n",
" <td>18.148952</td>\n",
" <td>17.861613</td>\n",
" <td>18.246445</td>\n",
" <td>17.286841</td>\n",
" <td>17.374517</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
"Publication Year 2011 2012 2013 2014 \n",
"Domain_English \n",
"Applied Sciences 59.610706 60.572012 58.432304 63.760049 \\\n",
"Arts & Humanities 0.000000 0.000000 0.000000 0.247372 \n",
"Economic & Social Sciences 2.433090 2.247191 2.296120 1.731602 \n",
"Health Sciences 14.111922 12.257406 12.272367 11.379097 \n",
"Multidisciplinary 1.824818 2.145046 3.404592 3.215832 \n",
"Natural Sciences 22.019465 22.778345 23.594616 19.666048 \n",
"\n",
"Publication Year 2015 2016 2017 2018 \n",
"Domain_English \n",
"Applied Sciences 63.578613 66.106804 64.537815 67.678959 \\\n",
"Arts & Humanities 0.052938 0.129199 0.235294 0.096409 \n",
"Economic & Social Sciences 1.799894 1.722653 2.823529 2.530730 \n",
"Health Sciences 11.434621 10.465116 10.789916 9.713184 \n",
"Multidisciplinary 3.017470 2.756245 2.521008 1.831767 \n",
"Natural Sciences 20.116464 18.819983 19.092437 18.148952 \n",
"\n",
"Publication Year 2019 2020 2021 2022 \n",
"Domain_English \n",
"Applied Sciences 66.672626 65.847156 65.241498 64.687467 \n",
"Arts & Humanities 0.196674 0.162915 0.197141 0.135657 \n",
"Economic & Social Sciences 2.860719 3.125000 3.104978 3.913180 \n",
"Health Sciences 10.924370 11.181872 12.752587 12.334342 \n",
"Multidisciplinary 1.483998 1.436611 1.416954 1.554837 \n",
"Natural Sciences 17.861613 18.246445 17.286841 17.374517 "
]
},
"execution_count": 348,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import numpy as np\n",
"percent_pivot = pd.crosstab(data['Domain_English'], data['Publication Year'], values=data[record_col], aggfunc=np.sum, normalize='columns')*100\n",
"percent_pivot"
]
},
{
"cell_type": "code",
"execution_count": 349,
"id": "3bda79fb",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[Text(0.5, 33.249999999999986, ''), Text(154.75, 0.5, '')]"
]
},
"execution_count": 349,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABW0AAAH9CAYAAABhvl7jAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzddXQUVxvH8W+ACMRwdwsOwd2hxd3d3d3dKe7uUNyluENxh0DQ4MESNIHs+8cmC0uEQEmzffl9zslpGbk7O8/euTPP3LljZTAYDIiIiIiIiIiIiIiIRYgQ3hsgIiIiIiIiIiIiIp8paSsiIiIiIiIiIiJiQZS0FREREREREREREbEgStqKiIiIiIiIiIiIWBAlbUVEREREREREREQsiJK2IiIiIiIiIiIiIhZESVsRERERERERERERC6KkrYiIiIiIiIiIiIgFUdJWRERERERERERExIIoaSsiIiIiIiIiIiJiQSKF9waI/Are7Z0T3pvwy4pcpCnvDy8N7834pdnlq8O7HVPCezN+aZF/a8uHK3vDezN+abZpi/Dh0u7w3oxfmm36Yvh4XAjvzfil2STMyIfrR8J7M35ptqny4ut5M7w345dmHTM5vg+vhPdm/LKs46XF59658N6MX5pNosz43Pw7vDfjl2aTPKfa43BmmypvqJZTT1sRERERERERERERC6KkrYiIiIiIiIiIiIgFUdJWRERERERERERExIIoaSsiIiIiIiIiIiJiQZS0FREREREREREREbEgStqKiIiIiIiIiIiIWBAlbUVEREREREREREQsiJK2IiIiIiIiIiIiIhZESVsRERERERERERERC6KkrYiIiIiIiIiIiIgFUdJWRERERERERERExIIoaSsiIiIiIiIiIiJiQZS0FREREREREREREbEgStqKiIiIiIiIiIiIWBAlbUVEREREREREREQsiJK2IiIiIiIiIiIiIhZESVsRERERERERERERC6KkrYiIiIiIiIiIiIgFUdJWRERERERERERExIIoaSsiIiIiIiIiIiJiQZS0FREREREREREREbEgStqKiIiIiIiIiIiIWBAlbUVEREREREREREQsiJK2IiIiIiIiIiIiIhZESVsRERERERERERERC6KkrYiIiIiIiIiIiIgFUdJWRERERERERERExIIoaSsiIiIiIiIiIiJiQZS0FREREREREREREbEgkcJ7A0Qk9D74fiRfh4l89PMzmx7Z1pqjEzua/r3hyEUW7TrBvScviBXVgfJ5MtDk99xEihjyfZpbj54xYe1+TrrdI2KECGRLlZAuVYuQMFbUIJfvOnMDkW2tGdKwdIjl+n76xKgVu9lx6irRHaPQrVpR8mdIbpr/3seXCgPmMrJJWVxTJgx5J4Sz8+4eTFyzm4s3HxDFzoZ8GVLQqXoJYjjZm5a5+/g5Y1bs4IzbXSJGjECJ7OnoWK04DpFtQyy7RJfxPHnhHWj6voldieYYhcyNBwe7bvY0SZjbvUGQ816/+8DA+Rs5eukmCWNFo2/9MmRMnsA0/+lLbyr3m87y/s1IGCvat3ZBuPrg+5F83WYGrgM21hwd29L07z3n3Zm9/QS3n7wkplMUyuRwoUmJ7FhHihjqz+o8ZwtXPJ6ybWBDs+kHLt1ixra/ufnoOdHsI1MuVxqalcwRYtlPXr2m35JdXLj9iDQJYzGgVjGSxI5qmn/V4ymtpm1gU7/6OES2CfU2hpdz124yafF6Lly/TRQ7W/JlTU/nBpWJEdXJtMyBkxeYvmIz7vceEs3JgfJF89C8aimsrYM+9Thx4RpN+o0P9jNb1SxLq5plAXj87AXjF67l8JnLfPz4iQypktK5YWXSJk8c7Pqv375jwJTFHD17mYRxY9GvZW0ypk5mmv/0+SsqtR/Eij96kzBOzO/dJf+6c9duMWnpei5cv2OMgWs6OtevTIyojqZlDpy8wPQ/t+Du8Yhojg6UL5qb5lV+DzYGAB98fMlTpxMfP31Vx+xsOb7sc3z2HD/LzFXbuP3gCTGjOlG2UE6aVv4txLKfPH9J30mLOO92izTJEzGodV2SxI9tmn/11j1aDJrMlmmDcIgS+Ud2y7/u3GU3Js5ZysVrN4hsZ0f+HFno3KI+MaI5m5Z5/PQZ42Yv5vDfZ/n46RMZ0qSkS/N6pE2VPISSP3vz9h1VmnWhZb1qVPy9yHfP/9ITz+f0GTWF81fcSJMyGYO7tiZJwnim+Vdv3KJFjyFsWTQFB/soodwL4efcVXcmLVzNBbebRIlsR76sGejcuIbZsehLSzb8xejZy9k2dwwJvlHPizfozJNnLwJN3790EtGcHQNND23Zr9++Y8DEeRw9c4mE8WLRr3UDMrp8/i08ff6SSq37smLCABLGjRXiNlqCcxevMGHGAi5euUbkyJHJnysbXdo2JUa0qABkyFcq2HVzuGZi/pRRwc6/eece46bO5cSZ80SMGJHsrhnp1rYZiRJ8/s26ud9i3LR5nL90FRsba/LmyErnNk2IGT348xnfjx8ZPm46O/YcIHpUZ3p0aEGBPDlM899/+ECZmk0ZM6gnWTOl/469ET7OXbrGhNmLuXj1OpEj25E/Z1a6tGxgigH4H4dmLuTQ32f4+PEjGdOkokurht88Dt2848G4mQs5cfaiMQaZ09OtdSMSxY8LQMkazXjw+GmQ6yaIG5sdK2YFOc/340eGT5zNjr2HiB7NmR5tm1AgVzbT/PcfPlCmbmvG9O9K1oxpv3OP/PvOXXZj4tzlX7QFmencvJ5ZW1C/Qz/OXLoWaN0VU0eQ3iVFsGWv3rKLJWu38uDxU+LGjkmtCr9Rs/xvWFlZ/aOyn3g+p8/oqZy/ct3YHnRp+VV7cJsWPYeyZeEki28Pzl25wcQFK7l4zd1YB7JlonPTmsSI+sX+7zKEM5fdAq27YuIg0qcOuh74+fmxetteVmzejcejJ0SP6kSR3FlpU7cKDvZBn6csWb+DUTOXsH3BOBLECf4Y/vrNO/pPmM3R0xdJFC82/do1IuMXsXr6/CUVW/Tkz8mDSRg3drDlWIqwbI9v3XvIuPkrOXnhqvE4lMGFrk1rmO2Xc1duMGnRGi643SSynS2FcmSmQ4OqZnUwKFMWr2XV9n3Y2djQuk5FKhTPb5pnMBio1Wkw9SqUpEyRPN+xN34uJW3/Ja9fvyZfvnzY29uzf/9+rK2tf2r5RYsWpVKlSrRr1461a9fSq1cvrl0LfOAOrcmTJ7Nu3Tr27NkT7DLnz59n6tSpnDlzhnfv3hE/fnxKlixJixYtcHBwCNXnuLi4MGLECCpXrvzD2/orufHAk49+fgxrVIZEXyRSI0T43Ggv3X2KMav2UDxrajpVLsSL12+ZtvEwbh5P+KNFxWDLfvTci4ZjlpEkTnRGNCnLe5+PTN14kFaTVrGqX0PsbD7/Zv38DIxdvZddZ9wol/vbJ7NrDp5j99nrDKpfist3HtFjziY2DWlGdEfjCcDSPadImyiOxSdsL99+QNPRi8iVLhnj21bn6UtvJq3Zw93Jf7KoT2MAvN6+p9mYRcRwdmBI04o893rD+FW7uO/5kumd6wRb9gvvtzx54U3n6sVxTWWeeHKMYgfAYv/P+NLuU1dYsP0o1QpnD7bsWZsOcO3eY0a1qMzu01fpNn01m0a0NSUZp2/YT9k8mSw+YQtw4+EzYx2oV5JEMT83wl/WgaNX79Jl7lZ+c01F+/J5cX/4nMmbj/DyzXt6Vi0Uqs/ZcuIqe87fJF508wvzI1fu0nHWFsrlTEP7cnm4/fgFkzYdxdPrLf1rFg22vNFrDvLugy9/NCnNigPn6bdkJ4s6VzPNn7jxCI1LZPtPJGwv37hD037jyZUpDRN6tuTp85dMXLKejg+esHhUdwCOnLlM++HTKF8kDx3qVeSWxyMmLl6P5/NXDGhTN8hy06ZIbFr/S1OWbuTSjduUKmC8oH7z7j2Nev+BjXUk+rWqja21NTNXbqXFgImsmdifWNGDPjmbuXIrbrc9GNWlKbuPnaHrmNlsnjbYlGScvmIzZQvn+k8kbC+736XpgAnkyuTChB7Nefr8FROXbKDjwxksHtE
"text/plain": [
"<Figure size 1500x600 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"f, ax = plt.subplots(figsize=(15, 6))\n",
"g = sns.heatmap(percent_pivot, annot=True, fmt='.2f', linewidths=.5, ax=ax, cbar=False)\n",
"for t in ax.texts: t.set_text(t.get_text() + \" %\")\n",
"g.set(xlabel=\"\", ylabel=\"\")"
]
},
{
"cell_type": "code",
"execution_count": 350,
"id": "01024cc0",
"metadata": {},
"outputs": [],
"source": [
"# percent_pivot.T.plot(kind='bar',\n",
"# stacked=True,\n",
"# figsize=(10, 6))"
]
},
{
"cell_type": "code",
"execution_count": 351,
"id": "4caa215d",
"metadata": {},
"outputs": [],
"source": [
"# percent_pivot.T.plot(kind='bar',\n",
"# stacked=True,\n",
"# figsize=(15, 8))\n",
"#\n",
"# plt.legend(loc=\"lower left\", ncol=2)\n",
"# # plt.ylabel(\"Release Year\")\n",
"# # plt.xlabel(\"Proportion\")\n",
"#\n",
"#\n",
"# for n, x in enumerate([*pivot_data.T.index.values]):\n",
"# for (proportion, count, y_loc) in zip(percent_pivot.T.loc[x],\n",
"# pivot_data.T.loc[x],\n",
"# percent_pivot.T.loc[x].cumsum()):\n",
"#\n",
"# plt.text(y=(y_loc - proportion) + (proportion / 2),\n",
"# x=n - 0.11,\n",
"# s=f'{count}',# ({np.round(proportion, 1)}%)',\n",
"# color=\"black\",\n",
"# fontsize=8,\n",
"# fontweight=\"bold\")\n",
"#\n",
"# plt.show()"
]
},
{
"cell_type": "markdown",
"id": "dcae04bd",
"metadata": {},
"source": [
"## Field"
]
},
{
"cell_type": "code",
"execution_count": 352,
"id": "d3807072",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Publication Year</th>\n",
" <th>Domain_English</th>\n",
" <th>Field_English</th>\n",
" <th>UT (Unique WOS ID)</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>233</th>\n",
" <td>2022</td>\n",
" <td>Natural Sciences</td>\n",
" <td>Physics &amp; Astronomy</td>\n",
" <td>596</td>\n",
" </tr>\n",
" <tr>\n",
" <th>232</th>\n",
" <td>2022</td>\n",
" <td>Natural Sciences</td>\n",
" <td>Mathematics &amp; Statistics</td>\n",
" <td>228</td>\n",
" </tr>\n",
" <tr>\n",
" <th>231</th>\n",
" <td>2022</td>\n",
" <td>Natural Sciences</td>\n",
" <td>Earth &amp; Environmental Sciences</td>\n",
" <td>409</td>\n",
" </tr>\n",
" <tr>\n",
" <th>230</th>\n",
" <td>2022</td>\n",
" <td>Natural Sciences</td>\n",
" <td>Chemistry</td>\n",
" <td>251</td>\n",
" </tr>\n",
" <tr>\n",
" <th>229</th>\n",
" <td>2022</td>\n",
" <td>Natural Sciences</td>\n",
" <td>Biology</td>\n",
" <td>181</td>\n",
" </tr>\n",
" <tr>\n",
" <th>...</th>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>2011</td>\n",
" <td>Applied Sciences</td>\n",
" <td>Information &amp; Communication Technologies</td>\n",
" <td>256</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>2011</td>\n",
" <td>Applied Sciences</td>\n",
" <td>Engineering</td>\n",
" <td>166</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>2011</td>\n",
" <td>Applied Sciences</td>\n",
" <td>Enabling &amp; Strategic Technologies</td>\n",
" <td>53</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>2011</td>\n",
" <td>Applied Sciences</td>\n",
" <td>Built Environment &amp; Design</td>\n",
" <td>6</td>\n",
" </tr>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>2011</td>\n",
" <td>Applied Sciences</td>\n",
" <td>Agriculture, Fisheries &amp; Forestry</td>\n",
" <td>9</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"<p>234 rows × 4 columns</p>\n",
"</div>"
],
"text/plain": [
" Publication Year Domain_English \n",
"233 2022 Natural Sciences \\\n",
"232 2022 Natural Sciences \n",
"231 2022 Natural Sciences \n",
"230 2022 Natural Sciences \n",
"229 2022 Natural Sciences \n",
".. ... ... \n",
"4 2011 Applied Sciences \n",
"3 2011 Applied Sciences \n",
"2 2011 Applied Sciences \n",
"1 2011 Applied Sciences \n",
"0 2011 Applied Sciences \n",
"\n",
" Field_English UT (Unique WOS ID) \n",
"233 Physics & Astronomy 596 \n",
"232 Mathematics & Statistics 228 \n",
"231 Earth & Environmental Sciences 409 \n",
"230 Chemistry 251 \n",
"229 Biology 181 \n",
".. ... ... \n",
"4 Information & Communication Technologies 256 \n",
"3 Engineering 166 \n",
"2 Enabling & Strategic Technologies 53 \n",
"1 Built Environment & Design 6 \n",
"0 Agriculture, Fisheries & Forestry 9 \n",
"\n",
"[234 rows x 4 columns]"
]
},
"execution_count": 352,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"group = ['Publication Year',\"Domain_English\",'Field_English']\n",
"data = wos.groupby(group, as_index=False)[record_col].nunique().sort_values(ascending=False, by=group+[record_col])\n",
"data"
]
},
{
"cell_type": "code",
"execution_count": 353,
"id": "2704641c",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"6"
]
},
"execution_count": 353,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"len(data[group[-2]].unique())"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "6f400aa1",
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": 354,
"id": "756513b5",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAkcAAAHJCAYAAACPEZ3CAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAD6cElEQVR4nOzdd1RUx9vA8e/SQRF7V8ACahAEVFRsYMMu9gJobNh7sGBDFAtYQYNdMTFWohJjbLFhjSU2VCIiggWxg0rd+/7By/250hXFMp9z9ujeMve5d5fdZ2fmzigkSZIQBEEQBEEQAFDL7wAEQRAEQRC+JCI5EgRBEARBeIdIjgRBEARBEN4hkiNBEARBEIR3iORIEARBEAThHSI5EgRBEARBeIdIjgRBEARBEN4hkiNBEARBEIR3iORIEARBEAThHSI5EgQhR8aPH4+pqSnr1q37ZMcIDAzE1NSUqKgoACZNmoS9vf1HlxsVFYWpqSmBgYFZbvf8+XPmzp1L8+bNMTMzo27duvTt25eDBw/m6nhnz57F1NSUs2fPfkzYgiDkE5EcCYKQrdjYWA4dOoSJiQlbt27lc806NGzYMPz8/D7LseLj4+nTpw9Hjx5l8ODBrF27Fi8vL4oXL86IESPYuHFjjsv64Ycf2Lp1Kz/88MMnjFgQhE9FI78DEAThy/fHH38A4O7uTt++fTlz5gz169f/5MetWLHiJz9Gmr/++ouwsDD279+PkZGRvLx58+bEx8ezbNkynJycUFdXz7asggULUqtWrU8XrCAIn5SoORIEIVs7d+6kfv361KtXD0NDQ7Zs2aKy3tnZmUmTJuHv70+DBg2wtrZm2LBh3L9/X97G19cXe3t7jhw5goODAxYWFnTv3j3LpqeMmtW2b99O27ZtMTMzo2nTpvj6+pKSkqKyzYEDB+jQoQPm5uY4Ojpy8+bNbM/xyZMnACiVynTrXF1dGTZsGImJifKyf//9l/79+2NlZUW9evUYN24c0dHRQMbNaqGhobi6umJlZYWVlRXDhw8nMjJSXp+2z+nTp+nfvz8WFhbY2tri7e2tcn6JiYksWbKEZs2aYW5uTrt27fj9999V4j106BCdO3emZs2a2NraMnv2bN68eSOvj4+PZ+bMmTRu3BgzMzMcHBxYu3ZtttdIEL4XIjkSBCFL//33H1evXqVTp04AdOrUicOHD8vJRJrDhw8TGBjI1KlT8fDw4MaNGzg7O/P27Vt5m2fPnjFx4kR69+7N0qVL0dHRYcCAAdy4cSNHsaxcuZJp06ZRv359/P396dOnD6tXr2batGnyNn///TejRo3C1NSU5cuX07p1a3766adsy27UqBEaGhr07dsXPz8//v33X5KSkgAwNzdnwIAB6OrqAhASEoKTkxMJCQksWLAADw8Prl27xoABA0hOTk5Xdnh4OD179uTp06fMnz+fOXPmEBkZSa9evXj69KnKthMmTMDa2hp/f3/atWvHmjVr2L59u8r69evX061bN1auXEnDhg2ZNGmSXLsXFBTE8OHDqVSpEsuXL2fEiBHs2bOHYcOGyc2hXl5eHD9+nIkTJ7J27VqaNWvGggUL2LlzZ45eB0H45kmCIAhZmDt3rlS3bl0pISFBkiRJevDggVStWjXp559/lrdxcnKSfvjhB+nevXvysuvXr0smJibS5s2bJUmSpGXLlkkmJibS77//Lm/z9u1bydbWVhozZowkSZK0c+dOycTERIqMjJQkSZImTpwo2dnZSZIkSa9evZLMzc2l6dOnq8S3bds2ycTERAoNDZUkSZI6d+4sdevWTWWblStXSiYmJtLOnTuzPNf9+/dLDRo0kExMTCQTExPJ3Nxc6t+/v/Tnn3+qbDdy5EjJ1tZWio+Pl5ddvHhRsrOzk0JCQqQzZ85IJiYm0pkzZyRJkqRx48ZJDRo0kGJjY+Xtnz9/LllbW0vz5s2TJEmS91m8eLHKsezt7SVXV1dJkiTp1q1bkomJibRhwwaVbUaMGCFNnTpVUiqVUuPGjaUBAwaorD916pRkYmIiHTlyRJIkSWrVqpU0depUlW38/Pzk9YLwvRM1R4IgZCopKYk9e/bI/W5evXpFgQIFsLa2Ztu2bSpNUFZWVlSoUEF+XqNGDSpUqMA///wjL9PQ0KBdu3bycx0dHRo3bqyyTWYuXbpEfHw89vb2JCcny4+0ZreTJ08SHx/P9evXsbOzU9m3devWOTrfli1bcvToUdasWUP//v2pXLkyp06dYsyYMYwaNUqueblw4QKNGzdGW1tb3tfS0pK///6b6tWrpyv3zJkz1K1bFx0dHTnuggULUrt2bU6dOqWyraWlpcrz0qVLy01iFy5ckON8l6+vL56enty5c4dHjx6lu0Z16tShYMGCnDx5EgAbGxu2bdvGoEGD+OWXX4iMjGT48OE0bdo0R9dJEL51okO2IAiZOnr0KE+fPmXHjh3s2LEj3foTJ07QpEkTAEqVKpVufbFixXj58qX8vHjx4mhoaKTb5sWLF9nGkrbN4MGDM1z/+PFjXr58iSRJFClSRGVdyZIlsy0/jaamJo0aNaJRo0YAREdHM3v2bPbv38/Ro0exs7PjxYsXFCtWLMdlvnjxgj///JM///wz3bqiRYuqPNfR0VF5rqamJidladcgs2Onrffw8MDDwyPd+sePHwOpHetLly7Nnj178PT0xNPTE0tLS2bOnEm1atVyfF6C8K0SyZEgCJnauXMnFSpUYM6cOSrLJUlixIgRbNmyRU6Onj9/nm7/J0+eqNxxllES9OTJkxwlGoUKFQLAx8dH5W6yNMWLF6dw4cKoqaml6w+Vk+SrZ8+eGBsbM3fuXJXlpUqVYs6cORw4cIDbt29jZ2eHvr4+z549S1fGsWPHMqw50tfXp0GDBvz444/p1r2fLGYl7Ro8e/aM0qVLy8vDwsJ48eKFvN7NzY26deum29/AwAAALS0thg4dytChQ3nw4AFHjhxhxYoVjB8/nr179+Y4HkH4VolmNUEQMhQTE8OJEydo27YtNjY2Ko969erh4ODAsWPH5Du0Lly4oJIgXbt2jaioKJVb/uPj4zlx4oTK8+PHj+doWAALCws0NTWJjo6mZs2a8kNDQ4NFixYRFRWFtrY2lpaWHDhwQGUspr///jvb8suVK8dff/2lcgdZmvDwcABMTEwAqF27NidPnlS5ey0kJITBgwdz/fr1dPvXrVuX27dvU716dTluMzMzNmzYkKsBJq2trTM8Hx8fH+bMmUOlSpUoVqwYUVFRKteoVKlSLFy4kJCQEOLj42nVqpU8mGfZsmXp06cPbdu25cGDBzmORRC+ZaLmSBCEDO3atYvk5GTatm2b4fpOnTqxfft2tm3bBsDbt28ZOHAgQ4cO5fXr1yxevBgTExOVPkYAkydPZsyYMRQrVoy1a9fy5s0bhg4dmm08RYoUYeDAgSxdupS4uDhsbGyIjo5m6dKlKBQKuTlo3Lhx9O3blxEjRtCjRw/Cw8Px9/fPtvyxY8dy9uxZunbtiouLC5aWlqipqXH16lXWrVtH48aNady4MZA6OGWPHj1wdXXFxcWF+Ph4lixZgrm5Oba2tly6dEml7GHDhtGzZ09cXV3p1asX2trabN26lUOHDrFs2bJsY0tTrVo1HBwc8Pb2Jj4+nurVq3P8+HGOHDmCn58f6urqjB07lunTp6Ouro6dnR2vXr1ixYoVREdH88MPP6Cjo8MPP/yAn58fmpqamJqaEh4ezu+//06rVq1yHIsgfMtEciQIQoYCAwOpWrWqXFvyPmtra8qXL8/27dspX748tWvXpl69eri7uwNgb2+Pm5sbWlpaKvvNnDkTLy8vnj17hpWVFb/99huGhoY5imnMmDGUKFGCzZs3s2bNGgwMDKhfvz7jxo1DX18fSK3VWb16NYsWLWLEiBGUL18eLy8vhgwZkmXZ5cuX5/fff2flypUEBQWxevVqJEnC0NCQAQMG4OLigkKhAFI7m2/atImFCxcyZswYChYsSJMmTZgwYUK684XUpObXX39l8eLFuLm5IUkSJiYmLF++nGbNmuXo3NN4e3vj5+fHxo0bef78OZU
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAi4AAAHJCAYAAACi47J4AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAADYhElEQVR4nOzdd3hT1RvA8W9m9x5QSmmZZW8oW5aiCKi4RXCggKyf4gBE3AwFUQSZCoqAIkMQt+BiQ9myyiilQCktpTs79/dHmtCWjhTaJmnP53l4Hsi9uXlzW5q355z3PTJJkiQEQRAEQRBcgNzRAQiCIAiCINhLJC6CIAiCILgMkbgIgiAIguAyROIiCIIgCILLEImLIAiCIAguQyQugiAIgiC4DJG4CIIgCILgMkTiIgiCIAiCyxCJiyBUM6LnZOUR91oQyp9IXATBRb388stER0ezbNkyu5+zYMECvvjii3J5/b///ptBgwbRunVrHn74YQ4fPmzX8yZNmkTv3r2LPd67d28mTZpULjFWlosXLxIdHc2GDRsAyMzM5LXXXiM2NtZ2ztChQxk6dKijQhSEKkMkLoLggrKystiyZQuNGjVizZo1dv9mP3fuXDQazW2//qlTpxg7diytW7dmwYIFKJVKRo4cSU5Ozm1f2xWFhoayZs0aevbsCcCJEyfYtGkTZrPZds5bb73FW2+95aAIBaHqEImLILigH3/8EYApU6Zw/vx5du/eXamvv2PHDgwGA6+99hpdunRh5MiRXL9+nfj4+EqNw1mo1Wpat25NYGBgsec0aNCABg0aVGJUglA1icRFEFzQ+vXr6dy5M506dSIyMpJvv/22wPGhQ4fyyiuvMH78eFq3bs0zzzxDdHQ0APPnz7f9XavV8vbbb9OjRw+aN2/O3XffbddUUt26dQH4/fffAdizZw/+/v62x8tTdHQ08+bNK/DYvHnzbO8BLNNPw4cPZ82aNfTt25eWLVvy2GOPER8fz19//cXAgQNp1aoVDz/8MCdOnChwrbVr1zJ48GBat25Ny5Ytue+++/jll19sxzds2EDTpk05fPgwjz76KC1atKBXr14F7lP+qaI9e/YwbNgwAIYNG2abHio8VWQ2m1myZAl33nknzZs3p1+/fnz99dcFYrtw4QKjRo0iJiaGVq1a8eijj/LPP//c5h0VBNcmEhdBcDGnT5/m6NGj3H///QDcf//9bN26ldTU1ALn/fLLL3h5ebFw4UKee+451qxZA8BDDz1k+/v06dP5999/mThxIl988QV9+vThww8/ZP369SXG0KtXL3r06MG7777LhAkT2LBhA59++ileXl52vw+j0Vjkn1t18OBBVq5cyaRJk5gxYwZnz55lxIgRzJgxg5EjRzJnzhySkpJ45ZVXbM9ZtWoVb775Jn379mXx4sXMnj0btVrNK6+8wpUrV2znmc1mXnzxRfr378+SJUto27YtH374Idu2bbspjmbNmvHmm28C8OabbxY7PfT222/z6aefMmjQIBYtWsTdd9/N9OnT+eyzz2yvOXLkSDQaDR9++CELFizA39+fF154gYSEhFu+T4Lg6pSODkAQhLJZv349/v7+tgWuDzzwAPPmzWPdunWMGjXKdp5KpeKdd95BrVYXeH7NmjVp3bo1AHv37qVr167ce++9AMTExODp6UlQUFCJMaSkpODt7Y1Go+Gnn35ixYoVxMTE2P0eLl26RLNmzew+3x45OTl88skn1K9fH7C8t2+//ZYvv/ySzp07A5CQkMAHH3xAZmYmvr6+JCYmMnz4cEaPHm27Tnh4OIMHD2b//v22+yJJEqNHj+bhhx8GoF27dvzxxx/8/fffdO/evUAc3t7etimh4qaH4uPj+e6775gwYQIjRowAoFu3bshkMhYvXswTTzyB0Wjk3LlzjB49mjvuuAOAli1bMn/+fPR6fXneOkFwKSJxEQQXYjAY+OGHH+jbty9arRatVouXlxft2rXju+++Y8SIEcjlloHUevXq3ZS0FBYTE8O3337LlStXuOOOO7jjjjsYM2ZMic85f/48w4YNIzAwkHnz5jFlyhTefPNN1q5dS1xcHP/99x8PPfQQ3t7exV4jJCSEhQsXFnnshRdeKOUuFM3Pz8+WtAAEBwcD0KpVK9tj/v7+ALbExVq9lJmZyblz50hISGDPnj0ANyUHbdq0sf1drVYTGBhIbm7uLcW6e/duJEmid+/eBUaZevfuzcKFC9m/fz99+vShQYMGTJ06le3bt9OtWzd69OjB5MmTb+k1BaGqEImLILiQv//+m2vXrrFu3TrWrVt30/Ft27bZfju3Z9pmypQp1KxZkx9++IH33nuP9957jzZt2vD222/TuHHjIp/z3nvv4eHhwcqVK/H29sbb25vnn3+el156CZVKxYEDBxgyZEiJr6tWq2nRokWxx25FcYmSp6dnsc+5cOECb775Jrt27UKlUlGvXj3b+y5cqeXu7l7g33K5/Jb7tKSnpwPYRnQKS05ORiaTsWzZMhYuXMgff/zBxo0bUalU9O3bl3feeQc/P79bem1BcHUicREEF7J+/XoiIiKYNm1agcclSWLs2LF8++23tsTFHmq1mhdeeIEXXniBy5cv89dff7FgwQJefvllfvrppyKfc+DAAR577DFbotClSxcmT57Me++9B8Dw4cNRqVS3+A6LZjKZCvz7Vkc68jObzYwYMQKVSsW6deto0qQJSqWSM2fOsGnTptu+fkl8fX0B+Oqrr4pMMGvVqgVAjRo1ePvtt3nrrbc4efIkv/76K0uXLiUgIECUVgvVllicKwguIiUlhW3btnHvvfcSExNT4E+nTp24++67+eeff0hOTi72GtZpJLBUFPXr18/WwK5WrVoMGTKEe++9l8uXLxd7jdq1axMbG1tgtOGBBx6wTc1Yp2PKi7e3903v6cCBA7d9XWv59kMPPUSLFi1QKi2/x/37778ABXqwlJVCoSjxePv27W0xtGjRwvYnLS2NuXPnkp6ezsGDB+nSpQtHjhxBJpPRpEkTXnrpJRo1alTi10cQqjox4iIILmLjxo0YjcZipxfuv/9+1q5dy3fffVfsNXx9fTlw4AD79u2jffv2NGvWjPnz56NSqYiOjiY+Pp7vv/+efv36FXuN8ePHM3bsWF566SUGDx5MWloaixcvRiaT0bt3b+bMmYNMJuP555+/7fcM0LNnT3766SdatWpFZGQkGzZsKJeqmqCgIMLDw1m1ahU1a9bE19eXbdu2sWLFCoDbatTn4+MDWKb2/Pz8bpp2i46OZtCgQUydOpVLly7RvHlz4uPj+fjjj6lduzZRUVEYjUbc3d157bXXGDduHMHBwezcuZMTJ07Yyq0FoToSiYsguIgNGzbQsGFDGjVqVOTxdu3aUbt2bdauXUvt2rWL/K1/1KhRLFiwgOeff56ff/6Zd999l08++YRly5aRkpJCUFAQDz30EP/73/+KjePOO+9k3rx5LFq0iDFjxuDt7U3Pnj158cUXCQwM5PXXX7+pNPt2TJ48GaPRyAcffIBSqaR///68/PLLvPHGG7d97QULFjBt2jQmTZqEWq2mQYMGLFy4kOnTpxMbG3vLLfobNmzIgAEDWLVqFdu2bbM1DMxvxowZLF682LY4OigoiP79+/Piiy+iUChQKBQsW7aMjz76iGnTppGZmUlUVBTvvvsugwcPvt23LgguSyaJXcAEQShnkiQhk8kcHYYgCFWQWOMiCEK5E0mLIAgVRSQugiAIgiC4DJG4CIIgCILgMkTiIgiCIAiCyxCJiyAIgiAILkMkLoIgCIIguIwq1celffv26PV6QkJCHB2KIAiCIAh2SklJQa1WExsbW+q5VSpx0el0N+1pIgiCIAiCczMajXZvWlqlEpfQ0FAAtm7d6uBIBEEQBEGwV58+few+V6xxEQRBEATBZYjERRAEQRAElyESF0EQBEEQXIZIXARBEARBcBkicREEQRAEwWWIxEUQBEEQBJchEhdBEARBEFyGSFwEQRAEQXAZInERBEEQBMFliMRFEARBEASX4dCW/3v27GHYsGFFHqtdu7Zo3S8IguDkcvRGVHI
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAj8AAAHJCAYAAABqj1iuAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACVZ0lEQVR4nOzdd1xV9R/H8de9cC97I+BKcW/BgQNzYJqZDcusHDlTS7NSU8u9zVU5yhxpppaZhZk2HGVhLpz9cguaAwFFNtx5fn8gNwlQUOAyPs/Hw4dyzrnnfs4BvW+/3+/5flWKoigIIYQQQpQRamsXIIQQQghRlCT8CCGEEKJMkfAjhBBCiDJFwo8QQgghyhQJP0IIIYQoUyT8CCGEEKJMkfAjhBBCiDJFwo8QQgghyhQJP0IIIYQoU2ytXYAQpc348eP57rvvct3v7e3Nvn37irCiwte3b18Avvjii4c6T1JSEnPnzmX37t2o1WqefvppxowZg63t/f+pMhqNrF+/nq1btxIZGYlKpaJq1ao89dRT9OnTB61W+1C1/deDXHNISAhBQUHMnTs312NSU1NZvXo1P/74I1evXkWj0VCzZk2ef/55evTogUqlytN7Xb16lY4dOzJnzhyee+65PNcoRFkg4UeIQlCuXDmWLl2a4z6NRlPE1RS+KVOmFNh5Dh06xIwZM4iJiWHmzJl4enoyZMiQ+7520qRJ/PLLLwwZMoQGDRpgNpsJDw/nww8/5MiRIyxbtqxAary71oKmKArDhg0jIiKCIUOGULNmTXQ6HWFhYUyaNInz58/z3nvv5elcPj4+bNq0iUceeaTA6xSipJPwI0Qh0Gq1BAQEWLuMIlOjRo0COc+vv/7Kiy++SKdOnQD49ttvOXr06H1fd/36db777jumT59Oz549LdsfffRRPD09mT17NidPnqRRo0YFUicU3DXf7ciRIxw8eJDPPvuM4OBgy/b27dujVqtZv349r776KuXKlbvvucraz6AQ+SFjfoSwstDQULp3707jxo1p3749CxcuRK/XW/b/9ddfDBo0iBYtWtCkSROGDRvG+fPnLfsPHjxI7dq12b9/PwMHDqRx48YEBwczf/58TCaT5TidTseyZcvo0qULDRs2pHPnzqxYsQKz2Ww5pm/fvkyePJmPP/6YRx99lMaNG/Pqq69y8+ZNtmzZQqdOnQgMDKR///5cvXo1y+syu4EA9Ho9H374IR07dqRRo0Z069btnl2Bmfz9/fntt9/Q6XRER0dz6dIlmjRpct/X3bx5E0VRslxLpqeeeopRo0bh6upq2RYTE8O7775Lu3btaNSoET169GD37t1ZXne/a/jvNcfFxTFt2jQ6dOhAgwYNCAoKYvjw4Vnu0/3ExsYC5HgdvXr14u23387S7RUREcGIESMICgqiefPmDB06lIsXLwIZ3V61a9fm22+/tRx//fp1Ro0aRVBQEI0bN6Zfv36cOnXKsj/zNT/++CMjR44kMDCQoKAgJk6cSGpqquU4RVFYu3YtTzzxBI0aNaJTp06sXr2au9fJDg8Pp0+fPjRu3JigoCDGjRtHXFycZb/ZbOaDDz4gJCSEBg0aEBISwsKFCzEYDHm+X0I8MEUIUaDGjRundOjQQTEYDDn+MpvNlmPXr1+v1KpVS5kwYYLy+++/Kxs2bFAaN26sTJo0SVEURdm/f79Sv359ZeDAgcquXbuU7du3K08//bTSpEkT5cKFC4qiKMqBAweUWrVqKa1bt1aWLl2q/Pnnn8rs2bOVWrVqKV9++aWiKIpiNpuV/v37KwEBAcqqVauUsLAwZeHChUrdunWViRMnWurp06ePEhgYqPTp00fZu3evsmnTJqV+/frK448/rjz99NPKzp07le+//14JCAhQXn311Syv69Onj+XrN954Q2nUqJHyySefKH/++acyZ84cpVatWsq2bdvuee8OHz6s1KtXTxkwYIDSrl075a233lL0ev1977lOp1PatWunNGrUSJk6daqyd+9eJSkpKcdjY2NjlUcffVR57LHHlO+++0757bfflJEjRyq1a9dWtm7dmudruPuazWaz0qNHD6VTp07KDz/8oBw4cED5/PPPlcDAQGXgwIGWc3bo0EEZN25crtdx8+ZNJSAgQGnWrJkyb9485cCBA0paWlqOx964cUNp1qyZ8uSTTyrbt29Xfv31V+W5555TgoODldu3bytXrlxRatWqpWzZskVRFEW5deuW8uijjyqdO3dWvv/+e2Xnzp1Knz59lICAAMvPUuZrmjdvrsydO1f5888/leXLlyu1a9dWFixYYHnvuXPnKnXr1lXmzZun7Nu3T1m+fLlSp04dZfny5YqiKMqhQ4eU+vXrK4MGDVL27NmjfPfdd0r79u2VJ5980nI9y5cvV5o3b6588803ysGDB5UVK1YodevWVT766KN7f7OFKAASfoQoYOPGjVNq1aqV669Vq1YpiqIoJpNJadWqlfL6669nef2qVauU7t27K3q9XunRo4fStWtXxWg0WvYnJCQoQUFBysiRIxVF+Tf8fPDBB1nOExISogwdOlRRFEX57bfflFq1aik//PBDlmOWLVum1KpVSzl37pyiKBkf6A0bNlTi4+MtxwwaNEipVauW8s8//1i2TZ8+XWnatKnl67uDwNmzZ5VatWopa9euzfJeI0aMyBK0crJjxw6lRYsWSq1atbKEqbw4e/as8swzz1juc506dZTnn39eWbVqVZYAMW/ePKV+/frK1atXs7y+X79+SnBwsGIymfJ0DXdf840bN5S+ffsqhw8fznL8jBkzlAYNGli+vl/4UZSMANixY0fLddSvX1/p3bu3smnTpiw/B3PnzlUaNWqkxMTEWLZFRUUp7du3V3777bds4WfRokVKw4YNs1y3TqdTOnbsqLzxxhuKovwbfsaMGZOlpr59+yrdunVTFCXj569evXrKrFmzsl3roEGDFEVRlBdffFHp1q1blnojIiKUunXrKuvXr1cURVEGDhyoDBgwIMs5vvjiCyU0NPSe90eIgiBjfoQoBOXKleOTTz7JcV/58uUBiIyM5NatW5bxLZkGDRrEoEGDSE1N5a+//mLEiBHY2NhY9ru6utKhQwf27t2b5XWBgYFZvvbz87N0VRw6dAhbW1u6dOmS5Zinn36ajz76iEOHDlGzZk0Aqlevjpubm+UYb29vPDw8qFy5smWbu7s7SUlJOV7fkSNHAOjcuXOW7UuWLMnx+Ezz5s1j7dq1DB8+nJiYGL766ivWr19Pnz59+OSTT2jSpAktWrTI9fW1atUiNDSUv/76i7CwMA4ePMixY8f466+/+Oabb9iwYQOenp4cOnSIwMBAKlasmO1evPvuu0REROT7Gnx9fVm3bh2KonD16lUuX75MREQER48ezdKFmRfNmjXjl19+4ciRI4SFhXHo0CGOHz/O4cOHCQ0N5bPPPsPe3p4jR44QEBCQZfyPn58fv/76K0C27rb9+/dTt25dfH19MRqNAKjVatq2bcv333+f5dj/jhXy8/Pj2rVrABw/fhyj0Zjt3kycOBGAtLQ0Tpw4waBBg1AUxfJelStXpnr16uzbt4/evXvTokULFi5cSK9evQgJCaF9+/b06dMnX/dKiAcl4UeIQqDVamnYsOE9j4mPjwfAy8srx/1JSUkoioK3t3e2fd7e3tnCh729fZav1Wq1ZQxGQkICHh4eWUIUYPngvPtczs7O2d7P0dHxntdyt/tdV06OHTvG6tWrmT59Oi+++CJGo5HLly8zZ84cTCYTH374IWPHjr1n+MnUsGFDGjZsyGuvvUZaWhqfffYZixcvZuXKlYwbN46EhIQsQS5T5n1OTEx8oGv4/vvvWbRoEVFRUbi7u1O3bt1s35O8UqvVNG/enObNmwMZ378PPviAL7/8km+++YY+ffoQHx9PpUqV8nzO+Ph4Ll++TP369XPcn5aWZvmzg4NDtnoyf5Yy742np2eO50lMTMRsNrNy5UpWrlyZbb+dnR0AgwcPxsnJiS1btrBgwQLmz59PzZo1mThxIi1btszzdQnxICT8CGElmQNw7x4ECnD79m1OnTpFYGA
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAj8AAAHJCAYAAABqj1iuAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAADGv0lEQVR4nOzdd3zN1//A8de92XuShJpBbIkZYobam6JWa2+1StSITSX2aK3aiqJGq2bVaFFRqkSMWEEkQoasm5vc+/sjP/crkpCQuMj7+XjkUfdzzufzeX9ubu/nnXPO5xyFVqvVIoQQQgiRRyj1HYAQQgghxLskyY8QQggh8hRJfoQQQgiRp0jyI4QQQog8RZIfIYQQQuQpkvwIIYQQIk+R5EcIIYQQeYokP0IIIYTIUyT5EUK8V2TeVSFEbpPkRwiBj48P3t7emZZ7e3vj4+OT4+ddsmQJbm5uutfnz5+nf//+utf379/Hzc2NXbt2vdHxd+3aRZcuXahcuTKVKlWiRYsWLFq0iNjY2GwdJ7euXwihH4b6DkAIIZ776aefCA4OzpFjLV26lO+//57evXszaNAgjIyMuHz5MqtXr+bkyZP8+OOPGBkZZflYlpaWORKXEEL/JPkRQnx0kpKSWLVqFX369GHkyJG67bVq1aJ48eIMGTKEI0eO0KxZsywdr2zZsrkVqhBCD6TbSwjxRn766SdatGhB+fLlqV+/PkuWLCElJSVdnfbt2+Pu7k7FihVp06YNv/32W4bH8/Hx4eeff+bBgwfpuroeP37M8OHD8fDwoHr16kyaNIm4uLhMY4uNjSUxMRGNRpOurF69eowcOZJChQqlqT99+nTq1KmDu7s7HTp04I8//tCVv9ztpVKpmDt3LvXq1aN8+fK0atWK/fv3pzmPt7c3ixcv5ttvv6VWrVpUrFiRPn36cOfOnTT1jh8/TpcuXXB3d6d27dpMnjyZmJgYXfnDhw8ZNWoU1atXp1KlSnzxxRcEBgamOcYvv/xC69atqVixIp6enowZM4awsLBM3x8h8jpJfoQQOsnJyRn+vGzFihVMmjSJmjVr8v3339OtWzdWrVrFpEmTdHU2b97M5MmTadSoEStWrMDf3x9jY2PGjBnDo0eP0h1z8ODB1KtXj3z58rFt2zbq16+vK1u0aBEuLi4sX76cL774gu3bt7N06dJMr8Pe3p5KlSqxZs0axo0bx5EjR3j69CkARkZGDBw4kPLlywOQkpJC79692bdvHwMGDGD58uW61qGAgIB0x9ZqtQwZMoStW7fSq1cvvvvuOzw8PBg5ciS7d+9OU3fDhg3cunWL2bNnM2PGDC5fvsy4ceN05ceOHWPAgAE4ODiwcOFCxowZw5EjR3StVU+fPqVLly5cuXKFSZMmMW/ePDQaDd26ddN1D54/f56xY8fSuHFjVq1axfjx4zlz5gyjR4/O9P0RIq+Tbi8hBAAPHjygXLlyr6337Nkzli9fTufOnZk4cSIAtWvXxtbWlokTJ9KrVy9KlixJSEgIffr0YfDgwbp9CxYsSPv27Tl//jwtWrRIc9zChQtjb2+PsbEx7u7uAMTHxwPQpEkTxo8fD0DNmjX5888/OXPmzCvjXLx4MWPHjmX37t3s3r0bhUJByZIl+fTTT/niiy+wsbEB4MSJE/z7778sW7aMRo0aAeDp6UlISAhnzpyhatWqaY77119/cfLkSRYsWEDz5s0BqFOnDgkJCfj7+9OyZUsMDVO/Wq2trVm+fDkGBgYA3Lt3jyVLlhAZGYmdnR1LliyhTJkyLF26FIVCAYCxsTGLFi0iIiKCjRs3EhUVxY8//kjBggUBqFu3Ls2bN2fRokUsXryY8+fPY2pqSv/+/TE2NgbA1taW//77D61WqzuuEOJ/JPkRQgCQL18+vvvuuwzLBg0apPv3hQsXSExMxNvbO02r0POnxf78809Kliyp6yaKiYnh1q1b3L17l7NnzwKpY3Ky4+UE5JNPPuH8+fOv3MfZ2ZkNGzZw8+ZNTpw4wdmzZzl37hzLli1j+/btbNq0iaJFi3L+/HmMjIzSPO2mVCrZunVrhsc9ffo0CoWCevXqpbv+vXv3cuPGDcqUKQNAhQoVdInP85gAEhISMDMzIzAwkGHDhqVJUJo3b65Lqk6fPk2ZMmVwcnLSnUupVFK3bl327t0LQLVq1ViwYAEtW7akSZMm1KtXj9q1a1OvXr1Xv6lC5GGS/AghgNQWhwoVKmRa9lxUVBRAmkfSXxQeHg6ktnJMnjyZ06dPY2RkRPHixSldujSQ/bl8zMzM0rxWKpVZPkaJEiUoUaIEvXv3Rq1Ws2vXLqZNm8b8+fNZvHgxUVFR2NraolRmbRRAVFQUWq2WypUrZ1geHh6uS34yihtAo9EQHR2NVqvFwcHhlee6e/dupi1yCQkJeHh4sHLlStatW8fatWtZuXIljo6ODBw4kB49emTpmoTIayT5EUJki7W1NQD+/v4ULVo0XbmjoyMajYb+/ftjZGTEjh07KFOmDIaGhty8eZM9e/bkeozr16/nu+++49ixY2kSECMjIzp37szx48e5efMmAFZWVrqE5sUWmMDAQLRabbrEw8rKCnNzczZs2JDhuYsUKZKlGC0tLVEoFLqxSM+pVCrOnDlDpUqVsLKyonr16owdOzbDYzxPSuvUqaPrejtz5gwbNmxgxowZVKpUiYoVK2YpHiHyEhnwLITIlkqVKmFkZERYWBgVKlTQ/RgaGjJ//nzu379PZGQkt2/fpmPHjroySB1fA2T4FBaQ5daX1ylRogSRkZFs3LgxXVlKSgohISGUKlUKSO1SU6vVutggtWVq/PjxrFixIt3+1atXJz4+Hq1Wm+b6r1+/zrJlyzIcIJ4RCwsLypQpw7Fjx9JsP3HiBP379yc8PJzq1atz+/ZtihUrluZce/bsYceOHRgYGPDtt9/SoUMHtFotZmZmNGjQQDeo+uHDh1l+z4TIS6TlRwiRLXZ2dvTt21c3U3KNGjUICwtj0aJFKBQKSpcujZWVFQULFmTz5s04OztjbW3NyZMnda0lCQkJGR7b2tqaiIgIjh8/rus6ehNeXl60bNmS+fPnc+3aNZo0aYK9vT2PHj1i69atPHr0iIULFwJQv359PDw88PHxYcSIERQqVIg9e/YQHBzM9OnT0x27Xr16VKtWjcGDBzN48GBcXV25dOkSixcvpk6dOtjb22c5zuHDhzNo0CBGjRpF27ZtiYiIYP78+TRq1IhSpUrx5ZdfsmfPHr788kt69+6NnZ0d+/fvZ/v27boB4J6enqxduxYfHx9at26NWq1m9erV2Nra4unp+cbvoRAfM0l+hBDZNmLECPLly8eWLVtYvXo1NjY21KxZk1GjRmFlZQXA8uXLmTlzJj4+PhgbG1OiRAm+++47Zs2aRUBAQIbjUdq3b8/x48cZMmQIw4cP1w38fRN+fn5Ur16dvXv3MnHiROLj47G3t8fLy4vZs2fr5vkxMDBg1apV+Pv7s2jRIhISEnBzc+OHH37IsMtIqVSycuVKFi1axIoVK3jy5AlOTk706tWLIUOGZCvGBg0a8P3337N06VKGDBmCvb09rVq1YtiwYQA4OTmxdetW5s2bx5QpU1CpVBQtWpSZM2fSsWNHIDUZ8/f354cffmDo0KEoFAqqVKnChg0bsLW1feP3T4iPmUIrqwgKIYQQIg+RMT9CCCGEyFMk+RFCCCFEniLJjxBCCCHyFEl+hBBCCJGnSPIjhBBCiDxFkh8hhBBC5Ckyz89LqlatSlJSEvny5dN3KEIIIYTIosePH2NsbExAQMBr60ry8xKVSkVKSoq+wxBCCCFENiQnJ2d5wWNJfl6SP39+AI4eParnSIQQQgiRVQ0bNsxyXRnzI4QQQog8RZIfIYQQQuQpkvwIIYQQIk+R5EcIIYQQeYoMeH4LKSkpqNVqfYchhPiIGBkZYWBgoO8whPioSfLzBrRaLY8ePSIqKkrfoQghPkK2trY4OzujUCj0HYoQHyVJft7A88Qnf/78mJubyxeUECJHaLVa4uPjCQ8PB8DFxUXPEQnxcZLkJ5tSUlJ0iY+Dg4O+wxFCfGT
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAj8AAAHJCAYAAABqj1iuAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB06UlEQVR4nO3dd1QU198G8GcXlo40aYoRBEURERUriAo27Nijoib2+pqiEjUaNZbYYgIxNoKxxcRo1MSS2BKDBQUjdlHEThUB6Qs77x/I/lwBXRTYhX0+53jizp2d/c5I3Md778wVCYIggIiIiEhDiFVdABEREVFlYvghIiIijcLwQ0RERBqF4YeIiIg0CsMPERERaRSGHyIiItIoDD9ERESkURh+iIiISKMw/BCRSvD5qkSkKgw/RCQXEBAAZ2dnDB06tNR9PvroIzg7OyMwMFDp4/r4+Cjsv27dOoSEhMhfBwUFwdnZ+bXHCA8Ph7OzM8LDwwEAe/fuhbOzMx49eqR0Ha/z6NEjODs7Y+/evUq/59WalDkPIlI9hh8iUiAWi3Hp0iXEx8cXa8vKysLJkyff+TO++eYbZGdny18PGjQIP//8c5mO0bFjR/z888+wsrJ653oAwMrKCj///DM6duz41sd4m/MgosrH8ENEClxcXKCrq4sjR44Uazt58iT09fVhbW1drp9pY2MDd3f3Mr3H3Nwc7u7u0NHRKZcadHR04O7uDnNz87c+xtucBxFVPoYfIlJgYGCADh06lBh+Dh06hG7dukFbWxtA6UNFgYGB8PHxKfH4RcNCwcHB8t+XNFy0a9cudOvWDW5ubhgxYgSePHmi0P7qsFdKSgo++eQTeHp6okmTJujbty/27dun8J67d+9i6tSpaNWqFVq2bIkJEyYgJiamxHMpOn5UVBT8/f3h5uaG3r17l3hdirx6HgEBAZg7dy42btyIjh07okmTJhg6dCguX76s8L5jx45h2LBhaNasGVxdXdG9e3fs2LFD3l40vLZr1y506tQJzZs3x7Fjx+Ds7IywsDCFY0VERMDZ2RmRkZGl1kmk6Rh+iKiYHj16FBv6ysjIwKlTp9CrV693OnbRsNDAgQNLHSLavn07FixYgA4dOmDdunVo2rQpPv/889ced+bMmYiJicHChQuxadMmuLi4YPbs2Th37hwAICEhAUOGDMG9e/fwxRdfYOXKlUhOTsaoUaOQmppa6nEnTJgAX19fBAcHw8HBATNmzMA///yj9Pn++eefOH78OObNm4c1a9YgOTkZ06ZNQ0FBAQDg77//xpQpU9C4cWOsW7cOQUFBqFOnDhYtWoSoqCiFYwUHB2P27NmYP38+2rVrBysrK+zfv19hn3379sHe3h4tWrRQukYiTaOt6gKISP107NgR+vr6OHLkCEaPHg0AOHr0KCwsLN75S7VoWKi0ISJBELBu3Tr06NEDc+bMAQB4eXkhIyMDu3btKvW458+fx5QpU9C5c2cAQKtWrWBqaiofFtuyZQvy8vIQGhoKS0tLAEDDhg3x/vvvIyoqCo6OjiUeNyAgAFOmTAEAtG/fHv7+/vjuu+/QoUMHpc43Pz8fISEhMDIyAgBkZmZi9uzZuHHjBlxdXXHnzh34+/tj7ty58vc0a9YMrVu3Rnh4OJo2bSrfPmzYMHTv3l3+2t/fH9u2bUNmZiYMDQ2Rk5ODw4cPY/z48UrVRqSp2PNDRMXo6enBx8dHYYjn4MGD8PPzg0gkqtDPvnv3Lp4+fYpOnTopbPfz83vt+1q3bo2goCBMnz4du3fvRnJyMmbPno3mzZsDACIjI+Hu7i4PPkBhADt58uRrg4y/v7/89yKRCF26dMHly5eRk5Oj1Pk4OTnJgw8A+XypognfY8eOxfLly5GZmYmrV6/i0KFD2LBhAwAgLy9P4ViNGjVSeD1gwABkZWXh6NGjAAoDalZWFvr166dUbUSaiuGHiErk5+cnH/p69uwZzp49i549e1b456alpQEAzMzMFLa/HFpK8vXXX2P06NG4evUq5s2bhw4dOmDMmDF4/PgxACA1NRUWFhZlrufVu8ksLCwgCALS09OVer++vr7Ca7G48K9dmUwGoHCu0rRp0+Dh4YHBgwcjKCgIGRkZAIo/C8nAwEDhdd26ddGqVSv53KZ9+/ahXbt25T4hnai6YfghohJ5e3vD0NAQR44cwdGjR2FnZwdXV1eFfYp6gYrmrxTJysp6688tCj1Pnz5V2P66eTkAYGxsjJkzZ+LEiRM4fPgwPv74Y1y8eBELFy6Ut6ekpBR739mzZ/Hw4cNSj/vq5yYnJ0NLSwumpqZvPhklfPrpp7hy5Qq2bNmCS5cu4fDhw/LhPmUMGDAA58+fR0xMDM6ePYsBAwaUS11E1RnDDxGVSEdHB507d8aff/6Jw4cPl9jrUzSck5CQIN8mlUqL3c30qqLej5LY29vD1ta22F1Vr3u+0OPHjxXuUKtXrx7GjRuHdu3aye8S8/DwQFRUlEIAevr0KcaOHfvaCczHjh2T/14QBPz1119o0aJFud1iHxkZia5du6J169byY546dQrA/3qHXqdbt27Q19fHF198AUNDQ/mcJyIqHSc8E1GpevTogQkTJkAsFmPevHnF2k1MTNCsWTNs27YNdevWhYmJCbZu3YqcnJxiQzQvq1GjBi5evIgLFy7Aw8NDoU0kEuHTTz/FJ598gnnz5qF79+64dOkSfvrpp1KPV7t2bdjY2ODLL79ERkYG3nvvPVy9ehX//PMPJkyYAAAYPXo09u3bh7Fjx2LChAmQSCT4/vvvYWNjg969e+P58+clHnvFihXIzc2Fg4MDdu/ejZiYGPz444/KXD6luLm54ffff0fjxo1hY2ODixcvYuPGjRCJRAoPgiyNvr4+evbsiZ9//hnvv/9+uYUyouqMPT9EVKp27dqhRo0aqF+/fql3Qy1fvhyurq6YN28ePvvsMzRu3BijRo167XEnTpyIq1evYty4cYiLiyvW3qtXL3z99de4dOkSJk2ahJMnT2LRokWvPWZwcDDat2+Pb775Bh9++CF++uknTJ06VX6nlq2tLXbu3AkrKysEBgbis88+g62tLX788UeYmJiUetwvvvgCv/zyC6ZOnYqkpCT88MMPxQLbu1i+fDmaNm2KxYsXY8qUKTh+/DgWLlwILy8vREREKHWMoqdS9+/fv9zqIqrORAJXFyQiKmbv3r347LPPcPz4cdjZ2am6nNdasGABoqKiij3UkYhKxmEvIqIqauvWrbh79y5++eUXrFy5UtXlEFUZDD9ERFVUREQE/v33X4waNeqdn7xNpEk47EVEREQahROeiYiISKMw/BAREZFGYfghIiIijcIJz6/w8PBAXl7eG9cRIiIiIvWRlJQEHR0dpZ6PxfDzitzc3GLrFBEREZF6y8/PL7YYcGkYfl5RtILz8ePHVVwJERERKcvX11fpfTnnh4iIiDQKww8RERFpFIYfIiIi0igMP0RERKRROOH5HRQUFEAqlaq6DNJAEokEWlpaqi6DiKhKYvh5C4IgID4+HqmpqaouhTSYqakpbGxsIBKJVF0KEVGVwvDzFoqCj5WVFQwMDPjlQ5VKEARkZWUhMTERAGBra6viioiIqha1Cj8bNmxAWFgYtm3bJt82b9487N69W2G/2rVr48SJEwAAmUyG4OBg7N69G8+fP0fLli0xf/581KlTp0JqLCgokAcfCwuLCvkMojfR19cHACQmJsLKyopDYEREZaA2E5537NiBtWvXFtt+69YtTJw4EWFhYfJfv/76q7x93bp12LlzJxYvXoxdu3ZBJpNh7NixyMvLq5A6i+b4GBgYVMjxiZRV9DPIeWdERGWj8vCTkJCAiRMnYtWqVbC3t1doEwQBd+7cgaurKywtLeW/zM3NAQB5eXn44YcfMH36dHTs2BENGzbE119/jfj4ePz1118VWjeHukjV+DNIRPR2VB5+rl27BolEggMHDqBp06YKbQ8ePEBWVhbq1atX4ntv3ryJzMxMtG3bVr6tRo0acHFxwYULFyq0biIiIiqbzLx85OXLkJiRi7x8GTLz8lVSh8rn/Pj4+MDHx6f
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAj8AAAHJCAYAAABqj1iuAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAADyAklEQVR4nOzdd3zN1xvA8c+92UsGkUSEEMQMMUPMxKZWW7WrKFpK1YpVe1Nb7U3r11Kl1FbEpvYWsZNIRELGzb3Jvb8/0txKk5CQRZ736+X1cr/z+d7EvY9znnOOQqfT6RBCCCGEyCOUOR2AEEIIIUR2kuRHCCGEEHmKJD9CCCGEyFMk+RFCCCFEniLJjxBCCCHyFEl+hBBCCJGnSPIjhBBCiDxFkh8hhBBC5CmS/AghMp3MnSqEyM0k+REiD+vatStly5bl8uXLqe738fHBz88vQ9e8ffs2HTt2zIzw0s3d3Z0FCxa89pjnz58zdepUGjZsSPny5alevTqff/45+/bty9C9Tp06hbu7O6dOnXqXkIUQOUiSHyHyuISEBEaMGIFarc6U6+3evZvz589nyrUyi0qlonPnzvz111/07t2blStXMmXKFAoUKED//v1Zu3Ztuq9Vrlw5Nm/eTLly5bIwYiFEVjLM6QCEEDnLysqK27dvs2jRIgYNGpTT4WSJ3bt3ExAQwJ49e3B1ddVvb9iwISqVivnz59OlSxcMDAzeeC1LS0sqVaqUdcEKIbKctPwIkceVKVOGNm3asGLFCq5cufLaY1UqFbNnz6Zx48aUL1+eypUr88UXX3D9+nUAFixYwMKFC4F/u6IePXqEu7s7W7duTXYtPz8/fHx89K+7du3KkCFDGDBgAJUqVeKLL74A4NGjRwwbNozatWtTrlw5atasybBhw3j+/Hm6nzEsLAwArVabYl+fPn34+uuvk7V8XbhwgR49elC5cmW8vLz47rvvCAkJAVLv9rp16xZ9+vShcuXKVK5cmX79+vHw4UP9/qRzTpw4QY8ePahYsSLe3t7MnDmThIQE/XFqtZq5c+fi6+uLh4cHLVu25LfffksW7/79+2nXrh0VKlTA29ubSZMmERMTo9+vUqkYN24cdevWpXz58jRt2pSVK1em+70SIi+Q5EcIwciRI7G1tX1j99ewYcPYsmULvXv3ZtWqVYwYMYLbt28zePBgdDodn376KZ988gkAmzdv5tNPP81QHH/++ScWFhb8+OOP9OrVi9jYWLp160ZAQABjx45l5cqVdOvWjZ07dzJnzpx0X7dOnToYGhry+eefs3DhQi5cuIBGowHAw8ODnj17YmZmBsC1a9fo0qULcXFxzJgxg/Hjx3PlyhV69uxJfHx8imsHBgbSoUMHnj17xvTp05k8eTIPHz6kY8eOPHv2LNmxQ4YMoUqVKixZsoSWLVuyYsUKfvnll2T7V69ezaeffsrSpUupXbs2fn5+/PHHHwDs2LGDfv36Ubx4cRYtWkT//v3Zvn07X3/9tb7IfMqUKRw5coThw4ezcuVKfH19mTFjBlu2bMnQz0KID5l0ewkhsLa2ZsKECXz11Vdpdn+p1Wqio6MZPXo0zZs3B6B69epERUUxbdo0wsLCcHR0xNHREUDfNfTo0aN0x2FkZMT48eMxNjYG4Pr16zg6OjJ9+nRcXFwA8PLy4uLFi5w+fTrd13V3d2fOnDmMHz+eBQsWsGDBAkxNTalatSqffPIJzZo10x+7ZMkSbGxsWLVqFSYmJgAULFiQwYMHc/v27RTXXrhwIWZmZqxZswZLS0sAatasScOGDVmxYgXDhw/XH/vpp5/Sr18//TH79+/nr7/+okOHDty6dYs9e/YwcuRIPv/8c/0xjx8/5tSpU7Ro0YJZs2ZRp04dZs2apb+mq6sr3bt35/Dhw9SvX5/Tp0/j7e1NixYtAKhRowbm5ubkz58/3e+XEB86SX6EEEDiyK5WrVqxYsUKGjdunKKg19jYWN99EhISQmBgIPfu3ePQoUMAmVIwXbx4cX3iA4ldcps2bUKr1XLv3j3u37/PnTt3uHv3bqqtMK/TuHFjGjRowMmTJzl+/DinTp3i+PHj+Pv78+effzJv3jwUCgXnzp2jXr16+sQHwNPTk4MHDwKkGOV18uRJqlevjqmpqT4mS0tLqlatyvHjx5Md6+npmey1o6Ojvsvq3Llz+jhflTSKLSAggODgYPr06ZPs2atVq4alpSXHjh2jfv361KhRg59//png4GDq1atHvXr19AmXECKRJD9CCL3Ro0dz4sQJRowYkWo3ydGjR5kyZQp3797FwsKC0qVLY25uDmTO3D4WFhYptq1evZolS5YQERFBgQIFKF++PGZmZrx8+TLD1zcyMqJOnTrUqVMHSEziJk2axJ49e/jrr79o0KABERERGWoliYiIYNeuXezatSvFPjs7u2SvTU1Nk71WKpX69y0iIgIgzXsn7R8/fjzjx49Psf/p06cAjBo1CkdHR7Zv387EiROZOHEinp6ejBs3jtKlS6f7uYT4kEnyI4TQs7a2Zty4cfTr14/Fixcn2/fgwQP69etHw4YNWbp0KS4uLigUCjZu3MjRo0fTvKZCoQBIVtgLJCvSTcuOHTuYNm0aQ4cOpV27dvpkYuDAgWnOTZSaDh06UKxYMaZOnZpsu4ODA5MnT2bv3r3cuXOHBg0aYGVlRXh4eIprHD58mDJlyqTYbmVlRa1atfQF2q8yNEz/R2y+fPkACA8P13cdQmKLT0REhH7/sGHDqF69eorzra2tgcQWuq+++oqvvvqKJ0+ecOjQIRYvXszgwYPZuXNnuuMR4kMmBc9CiGQaNmxIy5YtWbZsWbIk4MqVK8TFxdG7d2+KFCmiT2qSEp+kFgylMvnHSlIdTNJoKQCNRsOlS5feGMu5c+fIly8fvXr10ic+0dHRnDt3LtWRW2lxdnZm9+7dyUZgJQkMDASgVKlSAFStWpVjx44l68a7du0avXv35urVqynOr169Onfu3KFMmTJUqFCBChUqUL58edasWZOhCRSrVKkCoO9eSzJr1iwmT55M8eLFyZ8/P48ePdLfp0KFCjg4ODB79myuXbuGSqWiSZMmrFq1CoBChQrRuXNnWrRowZMnT9IdixAfOmn5EUKkMGbMGE6ePKkfIg6Jk/sZGhoyc+ZMevTogVqtZuvWrfz111/Avy05SS0Uf/zxBxUrVsTFxQVPT0/Wr19P0aJFsba2Zt26dahUKn2XWVo8PDz46aefmDZtGg0aNODp06esXLmSsLAwfUtHegwaNIhTp07xySef0K1bNzw9PVEqlVy+fJlVq1ZRt25d6tatC8DXX3/NZ599Rp8+fejWrRsqlYq5c+fi4eGBt7d3igkcv/76azp06ECfPn3o2LEjJiYmbN68mf379zN//vx0x1i6dGmaNm3KzJkzUalUlClThiNHjnDo0CEWLlyIgYEBgwYN4vvvv8fAwIAGDRrw4sULFi9eTEhICOXKlcPU1JRy5cqxcOFCjIyMcHd3JzAwkN9++40mTZqkOxYhPnSS/AghUrCxsWHcuHH0799fv61o0aLMnj2bhQsX8tVXX2FtbU2lSpVYv349Xbt25ezZs7i7u9O4cWN+//13/Pz8+OSTTxg3bhzTpk1j4sSJjB49GktLSz755BOqVKmSbJh3atq2bcujR4/YsmULmzZtwsHBgXr16tGpUyfGjBlDQEAAbm5ub3yewoUL89tvv7F06VJ27NjB8uXL0el0FC1alJ49e9KtWzd9S1bZsmVZv349s2fP5ttvv8XS0pJ69eoxZMiQZMXYSUqXLs3GjRuZM2cOw4YNQ6fTUapUKRYtWoSvr2+G3veZM2eycOFC1q5dy/Pnz3Fzc2P+/Pk0bNgQSBwtZmFhwYoVK9i8eTPm5uZUrlyZWbNm6UfDTZgwgblz57Jq1SpCQ0PJnz8/n3zyCQMHDsxQLEJ8yBQ6WYFQCCGEEHmI1PwIIYQQIk+R5EcIIYQQeYokP0IIIYTIUyT5EUIIIUSeIsmPEEIIIfIUSX6EEEIIkafIPD//UbVqVdRqNfb29jkdihBCCCHSKTQ0FGNjY86ePfvGYyX
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"data_complete = pd.DataFrame()\n",
"\n",
"for cat in sorted(data[group[-2]].unique()):\n",
" #data segment\n",
" sub_data = data[data[group[-2]]==cat]\n",
" sub_data = sub_data.complete({group[0]:range(int(data[group[0]].min()), int(data[group[0]].max()) + 1)}\n",
" ,group[-1],fill_value=0)\n",
" data_complete = pd.concat([data_complete,sub_data], ignore_index=True)\n",
" #plot\n",
" g=sns.lineplot(sub_data.sort_values(ascending=True, by=group[-1]),\n",
" y=record_col,x=group[0], hue=group[-1], marker=\"o\")\n",
" g.set(xticks=list(range(2012,2022+1,2)))\n",
" g.legend(title=None)\n",
" g.set_title(cat)\n",
" g.yaxis.set_major_locator(MaxNLocator(integer=True))\n",
" plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 355,
"id": "d09c080a",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABM0AAATuCAYAAADeEtRgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzddVRV2RfA8S9dotgBtoKBINiigIrdOQYyozN2xzh2jJigjmJ3j47dPRZ2ja0oYmAAioh03d8fzHs/H6GgKOrsz1qsJTfO3ffex/O+/c7ZR0tRFAUhhBBCCCGEEEIIIYSadmYHIIQQQgghhBBCCCHE10aSZkIIIYQQQgghhBBCJCFJMyGEEEIIIYQQQgghkpCkmRBCCCGEEEIIIYQQSUjSTAghhBBCCCGEEEKIJCRpJoQQQgghhBBCCCFEEpI0E0IIIYQQQgghhBAiCUmaCSGEEEIIIYQQQgiRhCTNhBBCCCGEEEIIIYRIQpJmQgjxlfLy8sLKyorOnTunuk1oaOgHt/ncVHEePnw402L4GHFxcUybNg0HBwfKlStH06ZNMzukz6527dpUrFgxTdt27twZKysrQkNDAfD398fKyorevXt/zhAB8PPzY9++fRrLrKysaN68+Wc/9qdKet0+p9u3b2NlZcXw4cM/+7Eywrf6XvGxevfujZWVFf7+/pkdylfna/sbT+n/g3PnzmFlZcWkSZM+qs30vBfIa0UIIb5eupkdgBBCiPc7f/48mzZtom3btpkdyndl8+bNLF++nKJFi9KyZUty5syZ2SF91bJmzUrfvn0pVqzYZz3OnTt3aNOmDR06dKBhw4bq5X379iVXrlyf9dgZoWXLllSuXBkDA4PMDuWrU7lyZfr27UvRokUzOxSRib7Gv/GU/j8wNzenb9++2NraZkpMQgghvg6SNBNCiG+Ah4cHtWrV+iaSBt+KW7duATB27FiqV6+eydF8/bJmzUq/fv0++3HevHlDbGxssuVf4tgZoVWrVpkdwlerSpUqVKlSJbPDEJnsa/wbT+3/g2/lfUcIIcTnI8MzhRDiK1emTBnevHmDu7t7ZofyXYmJiQEge/bsmRyJEEKIzCT/HwghhEiNJM2EEOIr161bN4oWLcq+ffs4evToB7ffunUrVlZWrFy5Mtm61OpUzZ8/n4MHD9KyZUtsbGyoXbs2K1asAODSpUt07NiR8uXLU7t2bby8vIiLi0vWdlRUFJMnT6ZatWqUL1+ezp07c+7cuRRj3LdvH+3bt8fOzg57e3t+/PFHzp49q7GNqp7M+vXrGTx4MDY2NtSoUYNLly699/xPnTpFly5dsLe3x8bGhpYtW7Ju3ToSEhI0znnbtm0AtGjRAisrq1RjVfH392fUqFE4Ojpia2tL48aNWb58ebIeE35+fgwdOpTq1atjbW2Ni4sL06dP5+3bt+9t/11WVlYMHTqUs2fP0qZNG/U9mTVrFtHR0cm2TakO0PteBz4+Pvz444/Y2tri4ODA2LFjefXq1QfPP6WaZsHBwUyePJnatWtjY2ND/fr1mTVrFuHh4cmO+euvv+Lk5IS1tTX29va0b9+eAwcOqLfx8vLCzc0NgNWrV2vcl5TO8+3bt0yfPh0XFxesra2pXr06Q4YMwc/PL8VrcebMGZYtW0a9evXU92bBggXEx8drbO/t7c2PP/5ItWrVsLGxoWnTpixatEj9wfp9kv6NqV7HW7duZfPmzTRt2pRy5crh6OjItGnTiIyM/GCbkDikrVevXlSuXJlKlSoxYsQIQkJCUtw2vdfl/PnzLF68WH0PW7RowcmTJ4HEYWsNGzbE1taWpk2bsn///mTHS8u9hZRrmqlqsl2+fJnOnTtjZ2dHpUqVGDhwYLL6Ti9fvmTkyJHUrVuXcuXKUaNGDX799VcePXqUpmsYHBzMtGnT1Oej+jteuHChxntaeu9ZfHw8S5cupX79+urXy8GDB9MUE8Dw4cOxsrLi2rVrNGrUiHLlytG+fXsURQHg0aNHGu8pDRs2ZNGiRcnee8LDw5k8eTINGjSgXLlyVKtWjb59+3Lz5k2N7Tp37oyjoyNPnz6lZ8+e2NnZUb16dX799VeePXuWLL6wsDA8PT3Vr6eaNWsybty4FN8zIiMjmTNnDg0aNMDW1pbatWszYcIEgoODgbT/ja9YsQIrKys2bNiQ7BgBAQGULl2abt26qZfFxMSwaNEi9fWrVq0aQ4YM4cmTJ++99u/7/yC1mmZBQUGMHz8eR0dHrK2tqV27Nh4eHoSFhb33WJC+18qjR48YMGAAtWrVUh9n/PjxBAUFffA4QgghMo4kzYQQ4iunr6/PxIkT0dLSYsKECcmSERnh4MGDDB48mOLFi/PDDz8QHh7O1KlTcXd356effiJ79ux06NABRVGYO3cu69atS9bG1KlT2bFjB40aNaJBgwZcv36dLl26cOzYMY3tZs+ezcCBAwkMDKRly5a0bNmS+/fv06VLF3bs2JGs3Xnz5nH9+nVcXV0pU6YMZcuWTfU81qxZQ9euXbl+/Tp169aldevWvH37lt9//50hQ4agKIq6NlepUqUA+OGHH+jbty/m5uaptuvj40Pr1q3ZsmULZcqUoWPHjhgaGjJt2jRGjx6t3u7q1au0atWKPXv2UL58eTp16kTOnDlZtmwZ7dq1SzXJkZK7d+/yyy+/YGRkRKdOnciWLRsLFy6ke/fu6gTgx4iKisLV1ZW3b9/SqVMnihUrxsaNG+nYsWOaPvS9KygoiDZt2rBq1SosLCzo1KkT+fLlY+HChfTp00ediLh27Rpt27bl2LFj1KhRgy5dulCjRg2uX79O//791cngypUr07JlSwBsbW3fe19ev35N27ZtWbZsGTlz5qRTp06UL1+evXv30qZNG65evZpsHw8PD+bOnUuFChXo1KkTUVFR/PHHH8yZM0e9zcWLF+nZsycPHjygUaNGuLq6oqOjw8yZMxk/fny6rs+71q5dy/jx4ylZsiSdO3fGwMCA5cuXa7x+UnP79m06duzIyZMnqVmzJk2aNOHUqVP8+uuvGXJdJk+ezPLly6lVqxaNGzfGx8eHXr164e7uzqRJk7C3t6dVq1b4+/szaNAg9VA2SPu9fZ+bN2/i5uaGtrY2HTp0wMrKin379vHTTz+pE5XR0dF069aNHTt2ULZsWX766ScqVKjAnj17aN++/Qf/tt6+fUu7du1YvXo1JUqUwM3NjSZNmhAUFMSsWbOYMWNGsn3Ses+GDx+Oh4cHurq6/PDDD+TLl4/+/funeK3fp1evXhQqVIj27dtTpUoVtLS0uHnzJq1bt2b//v1UrVqVn376iWzZsjFz5kx69eqlkfAdOHAgq1atokiRIvz44484OTlx4sQJOnXqxIMHDzSOFRUVhZubG35+frRv3x5ra2t27txJ+/btCQgI0LhuHTp0YMmSJVhYWODm5oadnR1//fUXbdu2JTAwUL1tZGQkHTp0YN68eWTJkoX27durv/j48ccfCQsLS/PfeOPGjdHR0Uk2WQAkfumSkJBAs2bNAIiNjaVbt27MnDkTExMTXF1dqVmzJgcPHqRNmzb4+Pikes3T+//Bs2fPaNOmDRs2bFC/DosWLcrSpUvp3LkzERERqR4L0v5aCQ4O5qeffuL48eNUrlyZLl26UKJECf7880/c3NxSHN4qhBDiM1GEEEJ8lebMmaNYWloqhw4dUhRFUcaMGaNYWloqEydOVG/z5s0bxdLSUnF1dVUv27Jli2JpaamsWLEiWZuurq6KpaWl8ubNG0VRFOXJkyeKpaWlxnEURVFOnjypXr527Vr1ctX2bdq0SRZnpUqVlCdPnqiX37x5U7G1tVWcnZ2VuLg4RVEU5erVq4qVlZXi6uqqREREqLcNDg5W6tatq9ja2iqvXr1SFEVRzp49q1haWiq2trZKYGDgB6/X48ePlTJlyijOzs7K48eP1cvDw8MVNzc3xdLSUtm2bZt6+W+//aZYWloqt27d+mDbHTt2VKysrJQDBw6olyUkJChdu3ZVLC0tlRs3bihxcXFKvXr1lDJlyijHjx/X2N/Dw0OxtLRURowY8cFjKYqivvY
"text/plain": [
"<Figure size 1500x1500 with 6 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"data_complete = pd.DataFrame()\n",
"\n",
"# Creating subplot axes\n",
"fig, axes = plt.subplots(nrows=3,ncols=2,figsize=(15, 15))\n",
"\n",
"for cat,ax in zip(sorted(data[group[-2]].unique()),axes.flatten()):\n",
" #data segment\n",
" sub_data = data[data[group[-2]]==cat]\n",
" sub_data = sub_data.complete({group[0]:range(int(data[group[0]].min()), int(data[group[0]].max()) + 1)}\n",
" ,group[-1],fill_value=0)\n",
" data_complete = pd.concat([data_complete,sub_data], ignore_index=True)\n",
" #plot\n",
" g=sns.lineplot(sub_data.sort_values(ascending=True, by=group[-1]),\n",
" y=record_col,x=group[0], hue=group[-1], marker=\"o\", ax=ax)\n",
" g.set(xticks=list(range(2012,2022+1,2)))\n",
" g.legend(title=None)\n",
" g.set_title(cat)\n",
" g.set_xlabel(None)\n",
" g.set_ylabel(None)\n",
" g.yaxis.set_major_locator(MaxNLocator(integer=True))\n",
"fig.suptitle(\"Number of co-publications in domains and respective fields\", y=0.92)\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"id": "09a6de71",
"metadata": {},
"source": [
"## SubField"
]
},
{
"cell_type": "code",
"execution_count": 356,
"id": "0397eb85",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Publication Year</th>\n",
" <th>Domain_English</th>\n",
" <th>Field_English</th>\n",
" <th>SubField_English</th>\n",
" <th>UT (Unique WOS ID)</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>1598</th>\n",
" <td>2022</td>\n",
" <td>Natural Sciences</td>\n",
" <td>Physics &amp; Astronomy</td>\n",
" <td>Optics</td>\n",
" <td>134</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1597</th>\n",
" <td>2022</td>\n",
" <td>Natural Sciences</td>\n",
" <td>Physics &amp; Astronomy</td>\n",
" <td>Nuclear &amp; Particle Physics</td>\n",
" <td>65</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1596</th>\n",
" <td>2022</td>\n",
" <td>Natural Sciences</td>\n",
" <td>Physics &amp; Astronomy</td>\n",
" <td>Mathematical Physics</td>\n",
" <td>10</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1595</th>\n",
" <td>2022</td>\n",
" <td>Natural Sciences</td>\n",
" <td>Physics &amp; Astronomy</td>\n",
" <td>General Physics</td>\n",
" <td>31</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1594</th>\n",
" <td>2022</td>\n",
" <td>Natural Sciences</td>\n",
" <td>Physics &amp; Astronomy</td>\n",
" <td>Fluids &amp; Plasmas</td>\n",
" <td>79</td>\n",
" </tr>\n",
" <tr>\n",
" <th>...</th>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>2011</td>\n",
" <td>Applied Sciences</td>\n",
" <td>Agriculture, Fisheries &amp; Forestry</td>\n",
" <td>Forestry</td>\n",
" <td>1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>2011</td>\n",
" <td>Applied Sciences</td>\n",
" <td>Agriculture, Fisheries &amp; Forestry</td>\n",
" <td>Food Science</td>\n",
" <td>1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>2011</td>\n",
" <td>Applied Sciences</td>\n",
" <td>Agriculture, Fisheries &amp; Forestry</td>\n",
" <td>Fisheries</td>\n",
" <td>2</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>2011</td>\n",
" <td>Applied Sciences</td>\n",
" <td>Agriculture, Fisheries &amp; Forestry</td>\n",
" <td>Dairy &amp; Animal Science</td>\n",
" <td>2</td>\n",
" </tr>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>2011</td>\n",
" <td>Applied Sciences</td>\n",
" <td>Agriculture, Fisheries &amp; Forestry</td>\n",
" <td>Agronomy &amp; Agriculture</td>\n",
" <td>3</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"<p>1599 rows × 5 columns</p>\n",
"</div>"
],
"text/plain": [
" Publication Year Domain_English Field_English \n",
"1598 2022 Natural Sciences Physics & Astronomy \\\n",
"1597 2022 Natural Sciences Physics & Astronomy \n",
"1596 2022 Natural Sciences Physics & Astronomy \n",
"1595 2022 Natural Sciences Physics & Astronomy \n",
"1594 2022 Natural Sciences Physics & Astronomy \n",
"... ... ... ... \n",
"4 2011 Applied Sciences Agriculture, Fisheries & Forestry \n",
"3 2011 Applied Sciences Agriculture, Fisheries & Forestry \n",
"2 2011 Applied Sciences Agriculture, Fisheries & Forestry \n",
"1 2011 Applied Sciences Agriculture, Fisheries & Forestry \n",
"0 2011 Applied Sciences Agriculture, Fisheries & Forestry \n",
"\n",
" SubField_English UT (Unique WOS ID) \n",
"1598 Optics 134 \n",
"1597 Nuclear & Particle Physics 65 \n",
"1596 Mathematical Physics 10 \n",
"1595 General Physics 31 \n",
"1594 Fluids & Plasmas 79 \n",
"... ... ... \n",
"4 Forestry 1 \n",
"3 Food Science 1 \n",
"2 Fisheries 2 \n",
"1 Dairy & Animal Science 2 \n",
"0 Agronomy & Agriculture 3 \n",
"\n",
"[1599 rows x 5 columns]"
]
},
"execution_count": 356,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"group = ['Publication Year',\"Domain_English\",'Field_English',\"SubField_English\"]\n",
"data = wos.groupby(group, as_index=False)[record_col].nunique().sort_values(ascending=False, by=group+[record_col])\n",
"data"
]
},
{
"cell_type": "code",
"execution_count": 357,
"id": "846596cf",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAxIAAAHJCAYAAAARog8OAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzddVhU6dvA8e8AA0gIErYCgmBioNgFura7dseqK/baoojdregaa7euopjrqmt3r7Guiii2oiKdM+8fvMxPBBEUHZT7c11cOieec58zM3Du85RCrVarEUIIIYQQQoh00NF2AEIIIYQQQohvjyQSQgghhBBCiHSTREIIIYQQQgiRbpJICCGEEEIIIdJNEgkhhBBCCCFEukkiIYQQQgghhEg3SSSEEEIIIYQQ6SaJhBBCCCGEECLdJJEQQktkLshvi7xfIjOTz6cQQhuydCLRsWNHihUrxrVr11Jc7+bmhqen51eJxdPTEzc3t69yrKwsLe9px44d6dixo+a1k5MTPj4+GRrHxYsX6dGjh+b1o0ePcHJywtfXN0OP86ky8pzDwsIoVaoUxYsX5+XLlxlSZqKzZ8/i5OTE2bNnM6zM99+LkJAQhg0bxoULFzLsGBkhMc4P/TRq1AhI/zX6Etc0pbi/1mf9+fPn9O/fn3LlylGjRg2WLl2apv0Sr8OHfjw8PL5w5Gn3xx9/MG3aNG2HIYTIgvS0HYC2xcfHM2LECHx9fdHX19d2OCIT2rx5M7lz587QMv/44w/8/f01r3PmzMnmzZspWLBghh7nU2XkOe/evRtTU1Pi4+PZunUrvXr1ypByAYoXL87mzZtxcHDIsDLf9++//+Ln50fz5s2/2DE+R69evahZs2ay5YaGhsDXuUbp8bU/6/379yc0NJRZs2Zx9epVZs2aRb58+WjYsGGa9h89ejTFixdPtjx79uwZHeonW7RoEa6urtoOQwiRBWX5RMLU1JQ7d+6wcOFCBg4cqO1wRCZUunTpL34MfX39r3KctMrIWHx9falWrRpKpZI//vgDDw8PdHQypjLUxMQkU103bShYsGCq1yCzXaOv+Vl/8+YNV65cYdSoUdSoUYMaNWqwYcMGLl26lOZEwsHBIVNdPyGEyEyydNMmgKJFi/LTTz+xbNkyrl+/nuq2KTX38PHxwcnJSfPa09OTbt26sXnzZmrXro2zszNt2rQhICCAw4cP07hxY0qVKkXLli35999/kx1j8+bN1KxZE2dnZzp37szNmzeTrH/y5AmDBg3C1dWVUqVKJdsmsdnAypUrqVevHqVKlWLbtm0pnk98fDzr16+ncePGODs7U7NmTWbOnEl0dHSS8+ncuTNjxoyhbNmyNGjQgPj4+BTLu3fvHn379sXV1ZXy5cvj4eGR5Kl7aGgoU6ZMoXbt2pQsWZJGjRqxdevWVK54Al9fX5ycnLh69SpNmzbF2dmZxo0b8+eff2q2+VBzjPebKQHExsYyceJEypcvT7ly5Rg+fDivX7/+4PHff99fvHjB8OHDqVSpEmXKlKFDhw5cvnxZs/7169eMGzeOWrVqUaJECVxdXenTpw+PHj3SXNPt27fz+PFjTROPlJp73L9/n/79+1OlShVKly5Nx44duXjxomZ94j779u2jf//+lClTBldXV0aNGkVERIRmu+vXr9O5c2dcXFwoU6YMXbp04cqVK6le83fPOfHanj59mq5du1KqVCmqVKnCjBkzPvhZSHT37l2uXr1KzZo1adKkCY8fP+b48ePJtnvx4gUDBw7UfHZGjx7NnDlzkjT3c3NzY/LkyXTu3BlnZ2e8vLxSfN+vXLlC165dKVu2LBUrVmTQoEE8f/4c+N9nKfG9eLfslJq8nT17lk6dOgHQqVMnzWcppe3fL9vHx4c6deqwYMECXF1dqVq1Km/fvgUSaqQaNmxIiRIlqFmzJj4+Ph+9lp/q/WsUFRXF2LFjqV69OiVKlKBevXosX7482X737t2jW7dumvd75syZxMXFadarVCqWLl1KnTp1KFGiBHXr1mXt2rVJyujYsSNDhgyhf//+lC5dmp9//jnFz/rHfq9BQs1WkyZNcHZ2pmLFigwZMkTzvn6IqakpVlZWHDhwALVazX///cfbt28pW7Zsuq9jatL6XU3p9/Lt27fx8PCgbNmylC1blj59+vDw4cMk5a9evZp69epRsmRJqlWrxtixYwkLCwMSPouPHz9m+/btms+fr68vxYoV448//qBKlSq4urqyfv16nJycCAgISFK2n58fRYsW5enTpxl6TYQQWUOWTyQARo4cSY4cORgxYgQxMTGfXd7ly5dZt24dnp6eTJkyBX9/f3r06MGUKVPw8PBg9uzZPH36lCFDhiTZ79mzZyxYsIABAwYwe/Zs3r59S8eOHXny5AmQcIPapk0bbty4gbe3N7NmzUKlUtG+ffskN+yQcBPzyy+/MH36dKpUqZJinKNHj9bc2C9atIj27duzbt06evfunaTj3oULF3j69CkLFy5k8ODB6OrqJivr+fPntG7dmvv37zN27FhmzJhBUFAQnTt3Jjg4mKioKNq1a8euXbvo3r07v/32Gy4uLnh5ebF48eI0XVcPDw/c3d1ZsGABdnZ2DBgwgKNHj6Zp33ft27ePGzduMHXqVIYPH86RI0f45Zdf0nQjFx4eTtu2bTl79ixDhw5lwYIFGBgY0LVrV+7fv49arcbDw4OTJ08yZMgQli9fTt++fTl9+jRjxowBoHfv3tSoUQNra2tN4vi+u3fv0qxZMx49esSoUaOYOXMmCoWCzp07c+7cuSTbjhkzhnz58vHbb7/RrVs3tm7dyqJFi4CE/gndu3cnR44c+Pj4MGfOHCIjI+nWrRuhoaHpum5DhgzBxcWFxYsX06hRI5YtW8Yff/yR6j7btm3D3NycWrVqUa5cOWxsbNi4cWOSbWJiYujcuTOXLl1i5MiRTJkyhVu3brFixYpk5a1fv56SJUvy22+/0aJFi2Trb968SYcOHYiOjmb69OmMGzeO69ev061btyQ3wWlVvHhxRo8eDSR8XxLfw7R68uQJR48eZc6cOYwYMQIzMzOWLFmCt7c3lSpVYvHixbRv357ff/8db2/vdMcHCTf0cXFxSX5S+yxPnjyZY8eOMXz4cJYvX467uzvTp09P9sBhypQpmve7fv36/P7772zatEmzfuzYscyfP58mTZqwePFi6tWrx+TJk1m4cGGScvbt24exsTGLFi2ie/fuyeJJy++1ixcvMmzYMH744Qd+//13RowYwZkzZxg8eHCq10ZPT0+TcPbr149OnTrRqVMnGjRo8NHrmuhj1zc939X3fy8HBATQpk0bXr16xbRp05g0aRIPHz6kbdu2vHr1CkhIoGbMmEH79u1Zvnw5ffr0wc/PjwkTJgCwYMECrK2tqVGjBps3byZnzpxAwoOiFStWMGnSJEaMGEGjRo0wMDDAz88vSUw7duygUqVK5MmTJ83XRAghEmX5pk0AZmZmjB8/nl69emVIE6fw8HDmzp2Lvb09AOfOnWPTpk2sWrWKSpUqAfDgwQOmTZtGSEiIpq1tfHw8CxcuxNnZGYBSpUpRu3Zt1q5dy/Dhw1m9ejXBwcFs3LiRfPnyAVC9enUaNGjAvHnzmD9/viaG+vXrp9qm++7du2zdupXBgwdrOv1WqVKFnDlzMmzYMI4dO0aNGjUAiIuLY/z48am2mV+1ahUxMTGsXLkSa2trAIoUKULbtm25evUqjx8/5vbt22zatIkyZcoAUK1aNeLi4vjtt99o06YN5ubmqV7Xjh070qdPH82+TZs2ZeHChZo40ypHjhwsX74cIyMjzes+ffpw7NgxatWqleq+iTUJ27dvp2jRogCULVuWn376ifPnz5MtWzayZcvG8OHDKVeuHAAVKlQgMDCQzZs3AwlNUSwsLJI08Xi3BgESbg709fVZs2YNJiYmANSsWZNGjRoxffr0JDU5NWrUYPjw4QBUqlSJkydPcuTIEQYPHszdu3d58+YNnTp10jyFLVSoEJs3byY8PBxTU9M0X7eWLVtqrn+lSpU4ePAgR44coU2bNiluHxcXx86dO2n
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA0MAAAHJCAYAAABHdOJ4AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAADrn0lEQVR4nOzdd1xV9RvA8c/lsoeAgrgVUVGTJc5AU9BKEwdo5sy00nKUe6dpw52KO/cqc6FWZuIoNUfulaKIOEIFBGVz4d7fH8T9eQUUFLmM5/168cp7zvec85xz6d7z8H2+36PQaDQahBBCCCGEEKKEMdB3AEIIIYQQQgihD5IMCSGEEEIIIUokSYaEEEIIIYQQJZIkQ0IIIYQQQogSSZIhIYQQQgghRIkkyZAQQgghhBCiRJJkSAghhBBCCFEiSTIkhBBCCCGEKJEkGRJCFHvybGkhhBBCZEeSIVEgevXqRd26dblw4UK26318fBgzZkyBxDJmzBh8fHwK5FglWW7e0169etGrVy/ta2dnZwIDA/M1jlOnTvHxxx9rX9+5cwdnZ2e2bduWr8d5UflxzsePH8fZ2Vnnp169evj6+jJjxgySkpKytD1+/Hiu979t2zacnZ25c+fOS8UphBBCFDaG+g5AlBzp6emMHTuWbdu2YWxsrO9wRCG0adMmypUrl6/73Lx5M6GhodrXZcuWZdOmTVSpUiVfj/Oi8vOcv/jiC1577TUAkpKSuHLlCvPnzycyMpKZM2cC8Nprr7Fp0yZq1KiRL8cUQgghijJJhkSBsbKy4tq1ayxcuJChQ4fqOxxRCLm7u7/yYxgbGxfIcXIrP2OpUaOGzv6aNm1KXFwcixcvZtKkSVhaWmJpaVmozl8IIYTQJymTEwWmTp06dOzYkeXLl3Px4sVnts2udCgwMBBnZ2ft6zFjxtCvXz82bdpEq1atcHV15b333iMsLIwDBw7g5+eHm5sbXbp04Z9//slyjE2bNtGiRQtcXV15//33uXz5ss76f//9l2HDhtGoUSPc3NyytMkst1q1ahVvv/02bm5ubN26NdvzSU9PZ8OGDfj5+eHq6kqLFi2YNWsWKSkpOufz/vvvM2nSJOrXr0/btm1JT0/Pdn83btxg0KBBNGrUiIYNG9K/f3+d3o+4uDi+/fZbWrVqhYuLC+3atWPLli3PuOIZMsuhzp07R6dOnXB1dcXPz4/ffvtN2yanMqunS94AVCoVX331FQ0bNqRBgwaMHj2ahw8f5nj8p9/3Bw8eMHr0aJo2bYqHhwc9e/bkzJkz2vUPHz7kyy+/pGXLltSrV49GjRoxcOBAbTnXmDFj2L59O3fv3tWWxmVXJnfz5k2GDBmCl5cX7u7u9OrVi1OnTmnXZ26ze/duhgwZgoeHB40aNWLChAkkJiZq2128eJH3338fT09PPDw86NOnD2fPnn3mNX/ynDOv7dGjR+nbty9ubm54eXkxc+bMHH8XnqdUqVI6r7N7/y5cuEC/fv1o3Lgx9evXZ8CAAVy7du2Z+z1y5Ajdu3fH09OTxo0bM3z4cCIiInTanDlzhh49euDu7k6LFi1Ys2YNffr00ZZPBgQE8N5772XZd58+ffjggw9e6HyFEEKIvJBkSBSocePGYWtry9ixY0lNTX3p/Z05c4b169czZswYvv32W0JDQ/n444/59ttv6d+/P3PmzCEiIoIRI0bobHfv3j0WLFjA559/zpw5c3j06BG9evXi33//BTJust977z0uXbrExIkTmT17Nmq1mh49eugkHZCRpH300UfMmDEDLy+vbOP84osvtMnJ4sWL6dGjB+vXr+fTTz/VGdx/8uRJIiIiWLhwIcOHD0epVGbZ1/379+natSs3b95k8uTJzJw5k6ioKN5//31iY2NJTk6me/fu7Nq1iw8//JBFixbh6enJ+PHjWbJkSa6ua//+/fH19WXBggU4Ojry+eef88cff+Rq2yft3r2bS5cuMW3aNEaPHs3Bgwf56KOPcnVjn5CQQLdu3Th+/DgjR45kwYIFmJiY0LdvX27evIlGo6F///4cOXKEESNGsGLFCgYNGsTRo0eZNGkSAJ9++ilvvPEG9vb22uT3adevX8ff3587d+4wYcIEZs2ahUKh4P333+fEiRM6bSdNmkTFihVZtGgR/fr1Y8uWLSxevBiA+Ph4PvzwQ2xtbQkMDOS7774jKSmJfv36ERcXl6frNmLECDw9PVmyZAnt2rVj+fLlbN68+bnbqdVq0tLSSEtLIykpidOnT7N27Vo6duyIpaVlttscO3aMbt26AfDNN9/w1VdfERERwXvvvZfldz1TUFAQffv2pXz58syZM4exY8dy5swZunbtSnR0NAChoaH06dMHgDlz5jB48GCWLVumk2R27tyZM2fOEB4erl0WERHB8ePH8ff3z9W1EkIIIV6GlMmJAmVtbc2UKVP45JNP8qVcLiEhgblz5+Lk5ATAiRMn+PHHH1m9ejVNmzYFIDw8nOnTp/P48WPtX8nT09NZuHAhrq6uALi5udGqVSvWrVvH6NGjWbNmDbGxsfzwww9UrFgRgObNm9O2bVvmzZvH/PnztTG0adOGgICAHGO8fv06W7ZsYfjw4dqB/F5eXpQtW5ZRo0bx559/8sYbbwCQlpbGlClTnjmGZPXq1aSmprJq1Srs7e0BqF27Nt26dePcuXPcvXuXkJAQfvzxRzw8PABo1qwZaWlpLFq0iPfeew8bG5tnXtdevXoxcOBA7badOnVi4cKF2jhzy9bWlhUrVmBubq59PXDgQP78809atmz5zG0ze3S2b99OnTp1AKhfvz4dO3bk77//xszMDDMzM0aPHk2DBg0AaNy4Mbdu3WLTpk0AVKlShdKlS+uUxj3ZkwOwYMECjI2NWbt2rTZhaNGiBe3atWPGjBk6PWpvvPEGo0ePBjJK0I4cOcLBgwcZPnw4169fJyYmht69e1O/fn0AqlevzqZNm0hISMDKyirX161Lly7a69+0aVOCg4M5ePBgtr0oT8pMPp5UqVIlPv/88xy3mT17NlWrVmXZsmXa5Nvb25vWrVszf/585s2bp9NerVYza9YsvL29mT17tnZ5Zm/mihUrGDVqFEuXLsXKyorly5djZmYGZFyPJ8+hXbt2TJs2jR07djBkyBAAduzYgYWFBa1bt37muQohhBD5QXqGRIHz8fGhffv2LF++nEuXLr3UvqytrbWJEICdnR2Qkdxkyrzxf/z4sXZZ5cqVtYkQgL29Pe7u7vz9998AHD16lDp16uDg4KD9S7uBgQHNmzfnr7/+0okh80Y9J5m9C++8847O8nfeeQelUqlTrmRjY/PcwfSnTp3C3d1dmwgBlCtXjgMHDvDGG29w4sQJKlasqE2EMrVv356UlBTOnTun04OQ+fOkTp06af+tUCho3bo158+fJzk5+ZmxPe2NN97QJkKQ8d4bGhpqr/PzzrNSpUo619fMzIw9e/bQpUsXHBwcWLt2LZ6enty5c4cjR46wbt06Tp8+nadexxMnTtCyZUudnhNDQ0PeeecdLl68SEJCgnb502NtypUrp02uatasSenSpRkwYABffPEFe/fuxc7OjpEjR+Z5goSn37snj/MsX375JVu2bGHLli1s3LiR6dOnY2JiQufOnbW9nk9KTEzkwoULtGnTRqcXslSpUrRs2TJLzxhAWFgYkZGRtGvXTmd5lSpV8PDw0G5z7Ngxmjdvrk2EMs8r848LkDGO8M0332Tnzp3aZdu3b6dt27aYmpo+93yFEEKIlyU9Q0IvJkyYwNGjRxk7dmyO42xyI6fSnydvwLOTmTQ9qUyZMtoxD7GxsYSHh2tn5nrak1MVP+9Yjx49AtBJXiDjhtvW1lanhMrCwuKZ+8qMrVKlSs883tPHgv+f8+PHj1m4cCELFizQWX/16lXtv8uWLauzrkyZMmg0Gp2EMjeejsPAwABbW9tc7Sc2NpYyZco8s83OnTu1pZA2NjbUqVMnzzfRjx49yvb3wc7ODo1GQ3x8vHbZkzf2kHE+mWWOFhYWbNiwgcWLF7N79242bdqEqakpHTp0YMKECXmaQfHpc3jyOM/i6Oi
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA1QAAAHJCAYAAACCBnjpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeVxN+f/A8VerREVkTyXK0iIh2wyKMdllX7JkHdvYl7HvS/adKWLsRhKGiLHvO2OIJMvYlxTtnd8f/bpfV0VI1/J+Ph49Ht1zPufzeZ9zb7f7vp/laCmKoiCEEEIIIYQQ4oNpazoAIYQQQgghhPhaSUIlhBBCCCGEEB9JEiohhBBCCCGE+EiSUAkhhBBCCCHER5KESgghhBBCCCE+kiRUQgghhBBCCPGRJKESQgghhBBCiI8kCZUQQgghhBBCfCRJqIQQqcj9voUQQgghMkYSqi+Up6cnpUuX5tKlS2nud3V1ZdiwYVkSy7Bhw3B1dc2Str5nGXlOPT098fT0VD22tbVl/vz5mRrHmTNn6Natm+rx3bt3sbW1xd/fP1Pb+ViZcc4nTpzA1tZW7cfOzg43NzemT59OdHR0qrInTpz41NA/q/nz52Nra6t6/Dn+bt9uIy1vX1dbW1tKly6Ni4sLXl5eXLx4MVNj+hL4+/tja2vL3bt3NR2KEEIIDdDVdAAifYmJiQwfPhx/f3/09fU1HY74Am3YsIECBQpkap2bNm0iNDRU9Thfvnxs2LCBokWLZmo7Hyszz3n06NGUKVMGgOjoaK5evcq8efN4/Pgx3t7eAJQpU4YNGzZQvHjxTGkzq/Ts2ZP27dtrpO1mzZrRvHlz1eO4uDiuX7/OkiVL6NSpE7t27cLMzEwjsQkhhBCZTRKqL5iRkRHXr19n4cKF9O/fX9PhiC9Q2bJlP3sb+vr6WdJORmVmLMWLF1err3LlykRGRrJ48WLGjBlDzpw5yZkz5xd1/hmlyQS4QIECqa5ZxYoVMTc3p2vXruzevZu2bdtqJjghhBAik8mQvy9YqVKlaNy4MT4+Ply+fPmdZdMaBpXWEKDOnTuzYcMGatWqhYODA61atSIsLIy///6bBg0a4OjoSPPmzfn3339TtbFhwwZq1KiBg4MDHTp04MqVK2r7//vvPwYMGEDFihVxdHRMVSZl6NiKFSv4+eefcXR0ZPPmzWmeT2JiImvWrKFBgwY4ODhQo0YNZsyYQWxsrNr5dOjQgTFjxlCuXDnq1q1LYmJimvXdvHmT3r17U7FiRSpUqED37t3VemEiIyOZMmUKtWrVwt7envr16/Pnn3++44onSxnqc+HCBZo0aYKDgwMNGjRg165dqjLpDRl7e/geQHx8PBMnTqRChQqUL1+eoUOH8uzZs3Tbf/t5f/ToEUOHDqVy5co4OTnRrl07zp07p9r/7Nkzxo0bR82aNbGzs6NixYr06tVLNVRp2LBhbNmyhXv37qmG+aU15O/WrVv07duXqlWrUrZsWTw9PTlz5oxqf8oxO3fupG/fvjg5OVGxYkVGjhzJ69evVeUuX75Mhw4dcHZ2xsnJiY4dO3L+/Pl3XvM3zznl2h47dgwvLy8cHR2pWrUq3t7e6b4W3sfY2FjtcVrP36VLl+jcuTMuLi6UK1eOHj16cP369VTHHDt2DE9PT9VreNOmTTx69IjevXvj5ORE9erV8fPzU2vvxYsXjB49mipVqmBvb0+LFi04duyYWpnY2FimTJlC1apVcXJyYvjw4Wp/G5B6yJ+iKPj5+eHu7o6DgwO1a9fG19dXbb7cpk2b8PDwoGzZsjg4ONCoUSN27tz5UdcxLSnXVktL64PO98iRI7Ro0QInJycqVKjAL7/8ovb3CxAcHIyHhwf29vZUrVqViRMnqr3WUsq0adMGJycn7Ozs+Pnnn1mzZo1qf8rztn79emrWrEm5cuU4cuQIAAcOHKBVq1aULVuWatWqMXr0aF6+fKlW/4ULF2jVqhX29vbUqFEDHx+fT79oQgghvniSUH3hfvvtN3Lnzs3w4cOJi4v75PrOnTvH6tWrGTZsGFOmTCE0NJRu3boxZcoUunfvzqxZs7h//z6DBg1SO+7BgwcsWLCAfv36MWvWLCIiIvD09OS///4Dkj+ot2rVin/++YdRo0Yxc+ZMkpKSaNu2baoPPvPnz6dr165Mnz6dqlWrphnn6NGjVQnO4sWLadu2LatXr6Znz55qHwBPnz7N/fv3WbhwIQMHDkRHRydVXQ8fPqRly5bcunWLsWPH4u3tzZMnT+jQoQMvXrwgJiaGNm3asG3bNrp06cKiRYtwdnZmxIgRLFmyJEPXtXv37ri5ubFgwQKsrKzo168fBw4cyNCxb9q5cyf//PMPU6dOZejQoezfv5+uXbtmKDl49eoVrVu35sSJEwwePJgFCxaQLVs2vLy8uHXrFoqi0L17d44cOcKgQYPw9fWld+/eHDt2jDFjxgDJw8SqV6+OmZmZKoF+240bN/Dw8ODu3buMHDmSGTNmoKWlRYcOHTh58qRa2TFjxlC4cGEWLVpE586d+fPPP1m8eDEAUVFRdOnShdy5czN//nxmz55NdHQ0nTt3JjIy8oOu26BBg3B2dmbJkiXUr18fHx8fNm3a9N7jkpKSSEhIICEhgejoaM6ePcuqVato3LgxOXPmTPOY48eP07p1awAmT57MxIkTuX//Pq1atUr1Wh8wYACurq4sXboUKysrxowZQ/v27SlRogSLFi3CwcGBKVOmqOYVxcbG0qFDB/bu3Uv//v1ZsGABBQoUoEuXLmpJxuDBg9m4cSPdu3dnzpw5REREpErM3jZ9+nSmT5+Oq6srS5YsoVmzZsyYMYNly5YBsGbNGkaPHk2tWrVYunQpM2bMQF9fn0GDBvHgwYP3Xsv0rmtCQgKvXr3i7NmzjBs3DiMjI9zc3DJ8vnfu3KFnz57Y2dmxePFiJk2aRFhYGN26dSMpKQmAbdu20atXL4oVK8bChQvp3bs3gYGBau8X+/fvp1evXpQpU4ZFixYxf/58zM3NGT9+PBcuXFCLf8GCBQwdOpTRo0fj5OTE33//Tffu3cmTJw9z5sxh0KBBBAcHpxo5MHbsWOrVq8eyZctwcnLC29ubv//++4OunRBCiK+QIr5I7dq1U9q1a6coiqLs3btXsbGxUWbNmqXaX7NmTWXo0KGqxzY2Nsq8efPU6pg3b55iY2Ojejx06FDFxsZGuXHjhmrb6NGjFRsbG+Xo0aOqbb6+voqNjY0SERGhdtyFCxdUZR49eqQ4ODgoU6dOVRRFUWbNmqXY29srd+/eVZWJjY1V3NzclD59+iiKoih37txRbGxslN9+++2d5379+nXFxsZGWbp0qdr2gIAAxcbGRtm/f79aXPfv339nfVOnTlUcHByUR48eqbbdv39fqVGjhrJ//35lzZo1io2NjXL27Fm143777TfF3t5eef78ebp1b968WbGxsVEWLFig2paUlKQ0atRIad68uaIoinL8+HHFxsZGOX78uNqxbz7HipL8nFapUkV59eqVatuePXsUGxsbZd++fWke8+bz/scffyi2trbKlStXVPtfv36t/PTTT8rGjRuVBw8eKJ6ensqpU6fU4pgwYYJiZ2enejx06FClZs2aqscpz9vmzZsVRVGUX3/9VXFxcVEiIyNVZeLj45U6deooTZs2VTtm0KBBam15enoq9evXVxRFUc6dO6fY2NgoZ86cUe0PDw9Xpk+f/s7n9M1zTrm2s2fPVivj6uqqdO/ePd06Uo5L68fV1VV58OBBqrIpz1+zZs2UunXrKgkJCaoyERERSsWKFZW+ffuqHePt7a0qc/78ecXGxkYZPHiwatuzZ88UGxsbZcWKFYqiKMqGDRsUGxsb5fz586oySUlJStu2bRUPDw9FURQlJCREsbGxUdauXasqk5iYqNStWzfV33vK8xgREaGULl1amTRpktp1mDBhgtK5c2dFURRlypQpavEqiqJcvnxZsbGxUbZv364oSur3lLSkd13t7OyUjh07qr0+M3K+27dvV2xsbNSekwsXLiizZs1SIiMjlaSkJOXHH39UnUeKo0ePKjY
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAAHJCAYAAAC/lBmPAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAADAuUlEQVR4nOzdd3gUVRfH8e9uKglpQOgdpEmA0JFeVaSLCEgXRapSpAhSVBBpCgFUmggoIEUBAREQsVFEepfeS4D0tsnu+0fMviwJkEDIJuT3eZ48ulPunJlZdufsPXPHYLFYLIiIiIiIiAhGewcgIiIiIiKSXihBEhERERER+Y8SJBERERERkf8oQRIREREREfmPEiQREREREZH/KEESERERERH5jxIkERERERGR/yhBEhERERER+Y8SJJEMTM95Tn06pumHzoWIiNiDEqTH1LlzZ8qUKcOhQ4eSnN+gQQOGDx+eJrEMHz6cBg0apMm2MrPknNPOnTvTuXNn6+uSJUsSEBCQqnH8888/vPnmm9bXly5domTJkqxevTpVt/OoUmOfd+3aRcmSJW3+ypYtS8OGDZk0aRKRkZGPFdfq1aspWbIkly5dAuDff/+lQ4cOD1w/4Tg/6G/p0qUp39kHyGz/tmNiYpgwYQLr1q1L1rKTJk2iVq1aVK1alREjRhAWFvbQ9ZI6j2XLluW5556jd+/e7N27NzV2JZF7PxtERCT9cbR3AE+DuLg4RowYwerVq3F2drZ3OJIOLV++nNy5c6dqmytWrOD06dPW1zlz5mT58uUULFgwVbfzqFJzn0ePHs2zzz4LQGRkJMePH2fGjBncvHmTyZMnp1pcP/30E/v27UtWO71796ZevXpJzitQoECKYnqYPn360KVLl1RtMz27ceMGX3/9NR9//PFDlw0ICGDp0qWMHTsWg8HAmDFjcHJy4oMPPkjWtu4+j9HR0Vy7do3Fixfz2muvERAQQKNGjR5nVxIZM2ZMqrYnIiKpTwlSKvDw8ODff/9l1qxZDBw40N7hSDpUoUKFJ74NZ2fnNNlOcqVmLMWLF7dpr0aNGoSGhvL5558zZswYsmbNmuZxFSxYMM2Od3pJetOjX3/9lVq1atGyZUsAtmzZkuwkF5I+jy+++CKdOnVi5MiRVK9ePUXvr4cpXrx4qrUlIiJPhkrsUkHp0qVp1aoV8+bN4/Dhww9cNqmyo4CAAEqWLGl9PXz4cF5//XWWL19Oo0aNKFeuHO3bt+fs2bNs27aN5s2bU758eV555RWOHTuWaBvLly+nXr16lCtXjq5du3L06FGb+VeuXGHQoEFUrVqV8uXLJ1omofTkq6++4oUXXqB8+fKsWrUqyf2Ji4vjm2++oXnz5pQrV4569eoxZcoUoqOjbfana9eujBkzhooVK9K0aVPi4uKSbO/MmTP069ePqlWrUqVKFXr16mXTSxIaGsrHH39Mo0aN8PPzo1mzZqxcufIBRzxeQinVgQMHaN26NeXKlaN58+b89NNP1mUSyrl27dpls25SJTEmk4mPPvqIKlWqULlyZYYNG8bt27fvu/17z/uNGzcYNmwYNWrUwN/fn06dOtlc1N2+fZtx48ZRv359ypYtS9WqVenbt6+1FGz48OF8//33XL582VpWl1SJ3blz5xgwYAA1a9akQoUKdO7cmX/++cc6P2GdjRs3MmDAAPz9/alatSqjRo0iIiLCutzhw4fp2rUrlSpVwt/fn27durF///4HHvO79znh2O7YsYMePXpQvnx5atasyeTJk+/7XngYT09Pm9f3lssluLck8n6lfwEBAcycOfOBy6RUcva7R48etGnTJtG6ffr0oUWLFkDiErsGDRowYcIEunbtSrly5Rg5ciQQ/74aMWIEdevWpVy5crRt25atW7fatFuyZEm++eYbRo4cSdWqVfH39+ftt98mMDDQukznzp0ZPXo0s2fPpnbt2pQvX5433niDwMBAVq1aRePGja3vg3uP95YtW2jTpg1+fn7UrFmTjz76yOa9FBAQQOPGjfn1119p3rw5ZcuW5fnnn+eHH34A4t+TDRs2BGDEiBEPLS0sUqQIf//9N7dv3yYsLIyjR4/i7+//wHUextnZmf79+xMUFMTGjRut04OCghg9ejTPPfccfn5+tGvXjh07dtis++eff9KuXTv8/f2pUqUKvXv3tvkMu/fzJCwsjNGjR1s/CwYOHMjChQttvhM6d+7MyJEjmTNnDvXq1cPPz4/27dtz8ODBx9pPERFJmhKkVPLee+/h4+PDiBEjiImJeez29u3bx5IlSxg+fDgff/wxp0+f5s033+Tjjz+mV69eTJs2jatXrzJkyBCb9a5du8bMmTN55513mDZtGsHBwXTu3JkrV64A8Rfe7du358iRI7z//vtMnToVs9nMa6+9ZvMlDvEXMm+88QaTJk2iZs2aScY5evRoa8Ly+eef89prr7FkyRL69Oljc4P1nj17uHr1KrNmzWLw4ME4ODgkauv69eu8+uqrnDt3jrFjxzJ58mQCAwPp2rUrQUFBREVF0bFjR9atW0fPnj2ZPXs2lSpVYuTIkXzxxRfJOq69evWiYcOGzJw5kyJFivDOO++wffv2ZK17t40bN3LkyBEmTpzIsGHD+PXXX3njjTeSdbEfHh5Ohw4d2LVrF++++y4zZ87ExcWFHj16cO7cOSwWC7169eLPP/9kyJAhzJ8/n379+rFjxw5reU6fPn2oW7cuvr6+1oT4XqdOnaJNmzZcunSJUaNGMWXKFAwGA127dmX37t02y44ZM4Z8+fIxe/ZsXn/9dVauXMnnn38OxF/A9ezZEx8fHwICAvj000+JjIzk9ddfJzQ0NEXHbciQIVSqVIkvvviCZs2aMW/ePFasWPHQ9cxmM7GxscTGxhIZGcnevXtZtGgRrVq1SrVf91955RXatm0LxP/I8MorryQ7prv/knoPPGi/W7RowZEjRzh//rx1+ZCQEH777Tdrr0hSvvnmG/z8/Jg9ezZt27YlMDCQtm3bsmfPHgYOHEhAQAD58uWjb9++rF271mbdTz/9FLPZzLRp0xg6dCjbtm1jwoQJNsv8+OOP7Nixg/HjxzNy5Eh27NhBp06dWLRoEcOGDeODDz7gwIEDNqVs69ato2/fvhQtWpRZs2bRr18/1q5dm+jz4ObNm3zwwQd06dKFOXPmkD9/foYNG8bp06fJmTOnNVHt3bu39f/vZ9CgQZhMJt566y3at29Pnjx5GDp06APXSY4aNWpgNBqt9yJFR0fTtWtXtm7dysCBA5k5cya5c+emZ8+e1iTp4sWL9OnTh7Jly/L5558zfvx4zp49y5tvvonZbE5yO3369GHjxo3079+fTz/9lPDwcKZOnZpouU2bNrF161ZGjRrFtGnTCAwMpH///o/8A4OIiNyfSuxSiZeXFx988AG9e/dOlVK78PBwPvvsM4oVKwbA7t27WbZsGQsXLqRGjRoAnD9/nk8++YSQkBDrr+lxcXHMmjWLcuXKAVC+fHkaNWrE4sWLGTZsGF9//TVBQUEsXbqUfPnyAVCnTh2aNm3K9OnTmTFjhjWGF198kZdffvm+MZ46dYqVK1cyePBg62ABNWvWJGfOnAwdOpTffvuNunXrAhAbG8sHH3zwwHtSFi5cSExMDF999RW+vr4AlCpVig4dOnDgwAEuX77MyZMnWbZsmfUX4tq1axMbG8vs2bNp37493t7eDzyunTt3pm/fvtZ1W7duzaxZs6xxJpePjw/z58/Hzc3N+rpv37789ttv1K9f/4HrJvT8fP/995QuXRqAihUr0qpVK/7++2+yZMlClixZGDZsGJUrVwagWrVqXLhwgeXLlwPxZUHZsmWzKau7+1d6gJkzZ+Ls7MyiRYusSUS9evVo1qwZkyZNsul5q1u3LsOGDQPiLwz//PNPfv31VwYPHsypU6e4c+cOXbp0oWLFigAULVqU5cuXEx4ejoeHR7KP2yuvvGI9/jVq1GDLli38+uuvtG/f/oHrdevWLdG0/Pnz88477yR72w+TO3du6/szOaVzI0eOtPbc3M3NzS1RideD9rtJkyaMGzeOH3/80br
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA28AAAHJCAYAAAASFQEmAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAADs00lEQVR4nOzdd1yO+//A8VelpKSM7FRCViVJUlYZB5nZZJ9jZyvH3kpmNtl7Jnt0HAfHPPbISHa2Itrdvz/6dv/cSopIvJ+PR49H9/X5XNf1vq677vt+35+lplAoFAghhBBCCCGE+KGpZ3YAQgghhBBCCCE+T5I3IYQQQgghhMgCJHkTQgghhBBCiCxAkjchhBBCCCGEyAIkeRNCCCGEEEKILECSNyGEEEIIIYTIAiR5E0IIIYQQQogsQJI3IYQQQgghhMgCJHkTQvy0FApFZocgMoA8j0IIIUQiSd7EN+Xm5kbZsmW5fPlyiuVOTk54enp+l1g8PT1xcnL6Luf6laXlOXVzc8PNzU352NzcHF9f3wyN47///uOPP/5QPn748CHm5uZs27YtQ8/zpTLymqOjo1mxYgWurq7Y2NhQuXJl2rRpg7+/v0ris23bNszNzXn48GGGnPdLpPd/PjAwEA8Pj28YkRBCCJF1ZMvsAMTPLz4+nuHDh7Nt2za0tLQyOxzxA9q4cSMFCxbM0GNu3ryZ4OBg5eP8+fOzceNGihUrlqHn+VIZdc0vXryge/fuhIaG4ubmhqWlJQkJCRw+fBhPT0/Onj3LhAkTUFNTy4Cov97cuXPJmTNnmuuvWLHi2wUjhBBCZDGSvIlvTk9Pj1u3bjFv3jwGDhyY2eGIH1CFChW++Tm0tLS+y3nSKqNi8fDw4MmTJ2zcuBETExPl9po1a1K4cGFmzJhBrVq1cHZ2zpDzfa2yZctmdghCCCFEliXdJsU3V6ZMGZo2bcrSpUu5cuVKqnVT6krm6+uLubm58rGnpyfdunVj48aN1K5dG0tLS9q0aUNISAiHDx+mUaNGWFlZ0bJlS65fv57sHBs3bqRmzZpYWlrSqVMnrl27plL++PFjBg0aROXKlbGyskpWJ6n73fLly/ntt9+wsrJi69atKV5PfHw8a9eupVGjRlhaWlKzZk18fHyIjo5WuZ5OnToxZswYKlasSIMGDYiPj0/xeHfu3KFv375UrlwZW1tbevToodK69PbtW6ZMmULt2rWxsLDAxcWFLVu2pHLHEyV1p7t48SLNmjXD0tKSRo0asW/fPmWdU6dOYW5uzqlTp1T2/bgLJEBsbCwTJ07E1taWSpUq4eHhwatXrz55/o+f92fPnuHh4YG9vT3W1tZ06NCB8+fPK8tfvXrFuHHjqFWrFuXLl6dy5cr06dNH2R3Q09OT7du38+jRI2VXyZS6Td69exd3d3ccHByoUKECbm5u/Pfff8rypH327t2Lu7s71tbWVK5cmZEjR/L+/XtlvStXrtCpUydsbGywtramc+fOXLhwIdV7/uE1J93bEydO0LVrV6ysrHBwcGDatGmf/FsAuH79OseOHaNbt24qiVuSzp070759e3R0dFS2X7x4kTZt2mBhYUHNmjVZunSpSnl0dDTe3t7UqFGD8uXL06hRI/bs2aNSx8nJiblz5zJ58mTs7OywtrZm8ODBvHv3jsWLF1O9enVsbGzo168fr1+/Vtnvw26Tu3btonHjxlhaWlKlShWGDBnC06dPgcS/rdOnT3P69Gnl317SvdqwYQO1atWiYsWKHDp0CHNzc44dO6YS49mzZzE3N1d5ToUQQoisTJI38V38+eef5M6dm+HDhxMTE/PVxzt//jxr1qzB09OTKVOmEBwczB9//MGUKVPo0aMHM2bMIDQ0lCFDhqjs9+TJE+bOncuAAQOYMWMG4eHhuLm58fjxYyAxKWjTpg1Xr15l1KhRTJ8+nYSEBNq3b6+SJEFiUvn777/j7e2Ng4NDinGOHj1amUwtWLCA9u3bs2bNGnr37q0yFuns2bOEhoYyb948Bg8ejIaGRrJjPX36lNatW3P37l3Gjh3LtGnTePHiBZ06dSIsLIyoqCjatWvHzp076d69O/Pnz8fGxoYRI0awcOHCNN3XHj164OzszNy5czE1NWXAgAEcOXIkTft+aO/evVy9epWpU6fi4eHB33//ze+//55qIpLk3bt3tG3bllOnTjF06FDmzp1L9uzZ6dq1K3fv3kWhUNCjRw+OHz/OkCFD8PPzo2/fvpw4cYIxY8YA0Lt3b2rUqIGhoaEyWf/Y7du3ad68OQ8fPmTkyJH4+PigpqZGp06dOH36tErdMWPGUKRIEebPn0+3bt3YsmULCxYsACAiIoLu3buTO3dufH19mTlzJpGRkXTr1o23b9+m674NGTIEGxsbFi5ciIuLC0uXLmXz5s2frH/06FGAT47lzJ49O6NHj8be3l5l+9ixY2nYsCGLFy/G2tqaadOmcfjwYSBxcpA+ffqwYcMGunTpwoIFC7C2tmbgwIH4+/urHGfZsmWEhoYyc+ZMevXqxa5du3B1deXYsWNMmDCBQYMGERgYyJw5c1KM77///mPYsGHUrVuXJUuWMHz4cE6ePMngwYOBxPtetmxZypYty8aNGylXrpxy37lz5+Lh4cHo0aOpWrUq+fPnZ8eOHSrH9/f3x8TEBBsbm0/eQyGEECIrkW6T4rvQ19dn/Pjx9OrVK0O6T757945Zs2ZhZmYGwOnTp9mwYQMrVqxQflC9d+8eXl5evHnzhly5cgGJLWHz5s3D0tISACsrK2rXrs3q1avx8PBg5cqVhIWFsX79eooUKQJA9erVadCgAbNnz1b5EFq/fn1cXV0/GePt27fZsmULgwcPVk6c4eDgQP78+Rk2bBj//PMPNWrUACAuLo7x48enOgZqxYoVxMTEsHz5cgwNDQEoXbo0bdu25eLFizx69IibN2+yYcMGrK2tAahWrRpxcXHMnz+fNm3aYGBgkOp9dXNzo0+fPsp9mzVrxrx585RxplXu3Lnx8/NTtvjkzp2bPn368M8//1CrVq1U901qMdu+fTtlypQBoGLFijRt2pQzZ86QI0cOcuTIgYeHB5UqVQLAzs6O+/fvs3HjRgCKFStGnjx5VLpKfthSBokf/rW0tFi1apVyDFbNmjVxcXHB29tbpcWyRo0aykkz7O3tOX78OH///TeDBw/m9u3bvH79mo4dO1KxYkUAihcvzsaNG3n37h16enppvm8tW7ZU3n97e3sOHTrE33//TZs2bVKsHxoaCkDRokXTfA6AQYMG0bZtWyCx++bBgwc5efIktWrV4t9//+Xo0aPMnDmTBg0aAIl/C5GRkfj4+ODi4kK2bIlvHTlz5mTmzJlky5aNqlWrsn37dp4+fcrmzZuV13306FHOnTuXYhz//fcf2tra/PHHH8rxsAYGBly+fBmFQkGJEiWUz83H3UzbtWvHb7/9pnzcrFkzVq9ezbt379DV1SUqKoq9e/eqTFojhBBCZHXS8ia+GycnJxo3bszSpUu5evXqVx1LX19fmbgB5MuXD0hMxpIkJSpv3rxRbjMyMlImbgCGhoZUqFCBM2fOAHDixAnKlClDgQIFiIuLIy4uDnV1dapXr86///6rEkNSYvEpSa03DRs2VNnesGFDNDQ0VLofGhgYfHbyiv/++48KFSooEzeAggULcvjwYWrUqMHp06cpUqSIMnFL0rhxY6Kjo7l48SIJCQnK60r6+VCzZs2Uv6upqVGnTh0uXbpEVFRUqrF9rEaNGipd9ZycnMiWLZvyPn/uOosWLapyf3PkyMH+/ftp2bIlBQoUYNWqVdjY2PDw4UOOHz/O6tWrOXfuXLpadU+fPk2tWrVUJs/Ili0bDRs25MqVK7x79065/ePEoWDBgspksGTJkuTJk4eePXsyevRoDh48SL58+Rg6dGi6JyT5+Ln78DwpSWqhTUuL5oeSkl5IvLf58uVT/p+cOHECNTU1atSoofJ34uTkxPPnz7l165ZyX0tLS2UiB4n/h6ampioJq4GBwSdbIG1tbYmMjMTFxYXp06dz9uxZHB0d6du372cnWPn4/8/V1ZX3799
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABcQAAAHJCAYAAACrGDpDAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd1gU19fA8S8giAhiw95RwQaCDbtixy7GgqIGG1E0wRgFO/bewIooYolGRcReiGI09t5RxAL2XlHKvn/wMj9W2oIYLOfzPPsoM3fm3pmdnZ09c+dcLZVKpUIIIYQQQgghhBBCCCGE+M5pZ3YDhBBCCCGEEEIIIYQQQoj/ggTEhRBCCCGEEEIIIYQQQvwQJCAuhBBCCCGEEEIIIYQQ4ocgAXEhhBBCCCGEEEIIIYQQPwQJiAshhBBCCCGEEEIIIYT4IUhAXAghhBBCCCGEEEIIIcQPQQLiQgghhBBCCCGEEEIIIX4IEhAXQgghhBBCCCGEEEII8UOQgLgQIlOoVKrMboIQQgghhBBCCCGE+MFIQPwH5ujoSPny5blw4UKS821tbXFzc/tP2uLm5oatre1/UtePTJP31NHREUdHR+VvMzMzPD09M7Qdp06dol+/fsrf4eHhmJmZ4e/vn6H1pFdGbvOHDx/w9fXF3t6eKlWqUL16dbp06UJAQIDaTQFPT0/MzMyUvz99HzSRnmVSk9pnM/69MzMzY/369UmWef36NZUqVcLMzIxjx45leJvSut1fYj8JIYQQQgghhBDi25AlsxsgMldMTAzu7u74+/ujp6eX2c0RX6H169dToECBDF3nhg0bCA0NVf7Oly8f69evp1ixYhlaT3pl1DY/efKEPn36cP/+fRwdHbGwsCA2Npb9+/fj5ubGyZMnmTBhAlpaWomWHTt2bJrrS88yGUVbW5tdu3bRuXPnRPP27t3Lx48fv1jdad3uzNxPQgghhBBCCCGEyFwSEP/BGRkZcf36dRYsWICrq2tmN0d8hSpXrvzF69DT0/tP6tFURrVl+PDhPHjwgPXr11OiRAlleoMGDShUqBCzZ8+mYcOGNGrUKNGypUuXTnN96Vkmo1hbW3Ps2DGePXtG7ty51eZt376dcuXKceXKlS9Sd1q3OzP3kxBCCCGEEEIIITKXpEz5wZUrV4527dqxbNkyLl68mGLZpNJIfJrmwc3Njd69e7N+/XoaN26MhYUFXbp0ISwsjP3799O6dWssLS356aefkgyOrV+/ngYNGmBhYUHPnj25fPmy2vx79+4xZMgQqlevjqWlZaIy8ekbVqxYQfPmzbG0tGTTpk1Jbk9MTAxr1qyhdevWWFhY0KBBA2bOnMmHDx/Utqdnz56MHTsWa2tr7OzsiImJSXJ9N2/exMXFherVq1OtWjX69++v1gv69evXTJkyhcaNG1OpUiVatWrFxo0bU9jjcfz9/TEzM+PcuXO0b98eCwsLWrduza5du5Qyx44dSzIdRVKpIaKiopg4cSLVqlWjatWqDB8+nGfPniVb/6fv+6NHjxg+fDg1a9bEysqK7t27c+bMGWX+s2fP8PDwoGHDhlSsWJHq1aszcOBAwsPDlX26efNmIiIilDQpSaVMuXXrFoMHD6Z27dpUrlwZR0dHTp06pcyPX2bnzp0MHjwYKysrqlevzqhRo3j37p1S7uLFi/Ts2ZMqVapgZWVFr169OHv2bIr7POE2x+/bI0eO4OTkhKWlJbVr12bGjBnJHgsAV65c4dChQ/Tu3VstGB6vV69edOvWDQMDgySXTyp1zZo1axg5ciTVq1fHysqKX3/9lSdPniS7zMePH5k7dy6NGjXCwsKCVq1asXnzZmV+TEwMS5cupVWrVlhYWFC5cmW6dOnC0aNHU9w/SWnSpAna2trs3btXbfrz5885evQoLVu2TLRMap9ngJcvX+Lu7q58rmbMmEFsbGyK+yq17U7PvgXYt28fHTp0oFKlStSuXZuJEyeqHWtCCCGEEEIIIYT4+klAXDBixAhy5cqFu7t7hqQ1OHPmDKtXr8bNzY0pU6YQGhpKv379mDJlCv3792f27Nncv3+foUOHqi334MEDvLy8+O2335g9ezYvX77E0dGRe/fuAXGB1i5dunDp0iVGjx7NrFmziI2NpVu3bmqBZ4gL1Pft25fp06dTu3btJNs5ZswYJUC9aNEiunXrxurVqxkwYIBabueTJ09y//59FixYwO+//46Ojk6idT18+JDOnTtz69Ytxo0bx4wZM3jy5Ak9e/bkxYsXREZG4uDgwNatW+nTpw8LFy6kSpUqjBw5ksWLF2u0X/v370+jRo3w8vKiZMmS/PbbbwQHB2u0bEI7d+7k0qVLTJ06leHDh3PgwAH69u2bYnA33tu3b+natSvHjh3jjz/+wMvLi6xZs+Lk5MStW7dQqVT079+fw4cPM3ToUHx8fHBxceHIkSNKmooBAwZQv359TExMlBsgn7px4wYdOnQgPDycUaNGMXPmTLS0tOjZsyfHjx9XKzt27FgKFy7MwoUL6d27Nxs3bmTRokUAvHnzhj59+pArVy48PT2ZM2cO79+/p3fv3rx+/TpN+23o0KFUqVKFxYsX06pVK5YtW8aGDRuSLf/PP/8AJJt/O2vWrIwZM4aaNWtq3IY5c+YQGxvL7NmzGTZsGPv372fy5MkptnnFihX89NNPLFmyhDp16uDm5sa2bdsAmDlzJgsXLqRz584sW7aMCRMm8OLFC3799Vfev3+vcbsAcuTIQe3atdVu1ADs3r2bQoUKYWFhoTZdk89zbGwsffr0ITg4mOHDhzN16lROnz7Njh07UmxLatudlNT27datWxk4cCClSpViwYIFuLi4EBgYmOh8IYQQQgghhBBCiK+bpEwRGBsbM378eH755ZcMSZ3y9u1b5s6di6mpKQDHjx9n3bp1+Pr6KsG/27dvM23aNF69ekWOHDmAuN6qCxYsUAJnlpaWNG7cmFWrVjF8+HBWrlzJixcv+PPPPylcuDAA9erVw87Ojnnz5jF//nylDS1atMDe3j7ZNt64cYONGzfy+++/K4M71q5dm3z58jFs2DAOHjxI/fr1AYiOjmb8+PEp5pT29fXl48ePrFixAhMTEwDMzc3p2rUr586dIyIigpCQENatW4eVlRUAdevWJTo6moULF9KlSxdy5syZ4n51dHRk4MCByrLt27dnwYIFSjs1lStXLnx8fJSeybly5WLgwIEcPHiQhg0bprhsfM/uzZs3U65cOSAuVUa7du04ceIE2bJlI1u2bAwfPpyqVasCUKNGDe7cuaMMuFisWDFy586tlibl0162Xl5e6Onp4efnh6GhIRCXZqRVq1ZMnz5drWd9/fr1GT58OAA1a9bk8OHDHDhwgN9//50bN27w/PlzevTogbW1NQClSpVi/fr1vH37FiMjI433208//aTs/5o1a7Jv3z4OHDhAly5dkix///59AIoUKaJxHakpW7YsU6ZMUf4+f/58ogB0vJCQEHbv3s2IESPo2bOn0u6IiAiOHTtGq1atePToEa6urmq9pbNmzcqgQYO4du1amlPHtGjRghEjRqilTdm+fTt2dnaJymryeT548CDnz5/H29ubevXqKduQ0iCfmmx3UlLatyqVipkzZ1K3bl1mzpyplClRogS9evUiODg4yRs7QgghhBBCCCGE+PpID3EBxPVibdOmDcuWLePSpUuftS5jY2MlGA6QN29eIC7AHS8++Pvq1StlWtGiRdV6kZqYmFC5cmVOnDgBwJEjRyhXrhz58+cnOjqa6OhotLW1qVevHv/++69aG+KDtcmJ72X8aRqHli1boqOjo5Z6JGfOnKkOsHjq1CkqV66sBMMBChQowP79+6lfvz7Hjx+ncOHCSjA8Xps2bfjw4QPnzp0jNjZW2a74V0Lt27dX/q+lpUWTJk04f/48kZGRKbbtU/Xr11dL02Fra0uWLFmU/ZzadhYpUkRt/2bLlo3du3fz008/kT9/fvz8/KhSpQrh4eEcPnyYVatWcfr06TQ9fXD8+HEaNmyoBMMBsmTJQsuWLbl48SJv375Vpn8atC1QoIASYC9Tpgy5c+f
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA0YAAAHJCAYAAAChXSk8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACxIklEQVR4nOzdd3hT5fvH8XeSJl100VK20LL3BgXZDmSpOH5u+YoDAQeoDEVBXIiKMhXEPVFAEVFREQeKIksUZAhljwKlLV2Z5/dHSWihQAtt0/F5XRfXRXPWnZM0PXee+7mPyTAMAxERERERkXLM7O8ARERERERE/E2JkYiIiIiIlHtKjEREREREpNxTYiQiIiIiIuWeEiMRERERESn3lBiJiIiIiEi5p8RIRERERETKPSVGIiIiIiJS7ikxEjkPuj+yFBa9l86utJyj0hKniIjkVuoTo1tvvZXGjRvz999/57m8R48ejB49ulhiGT16ND169CiWY5Vn+XlNb731Vm699Vbfzw0aNGDatGmFGsfq1au5++67fT/v2bOHBg0asGDBgkI9zrkqzOdst9t5++23ueaaa2jTpg3t27fnhhtu4PPPPy9XF4FF8TuemprKyJEjWbVqle+xk9+/xeH111+nR48etGnThqFDh5KYmHjG9b3v97P9++OPP847tgMHDnD33Xezd+/e897XyaZNm0aDBg3Out4PP/zA7bffTtu2bWnWrBmXXnopzzzzDEeOHMm13qeffsrzzz9fKLGd/H7zx/tCRKQ8CfB3AIXB7XYzZswYFixYgM1m83c4UgLNnTuXKlWqFOo+P/30U7Zt2+b7OTY2lrlz53LBBRcU6nHOVWE958OHD3PnnXeyf/9+br31Vpo3b47H42HZsmWMHj2aVatW8dRTT2EymQoh6pJtyJAh3HbbbYW6z3///ZeFCxdyzTXX+B4bN25coR7jbD7++GMmT57MY489RpUqVRg/fjxjxozhjTfeOO023ve716FDhxg2bBj33nsv3bp18z1et27d847vt99+46effjrv/Zyrzz77jDFjxnDDDTcwcOBAgoOD+e+//5g9ezbLli1j/vz5REREAPDqq6/Svn37IomjuN8XIiLlTZlIjMLCwti6dSszZsxg+PDh/g5HSqCWLVsW+TFsNluxHCe/CiuWUaNGceDAAebOnUvt2rV9j3fr1o1q1aoxefJkunfvTs+ePQvleCVZcSW9hZFMFMSPP/5Io0aNuOWWW4Ds0dCPP/74jNuc/H7fs2cPkH2OStLvQWGYMWMGffr0Yfz48b7HLrzwQtq2bcuVV17Jp59+yp133lnkcRT3+0JEpLwp9aV0AI0aNeKqq65izpw5/PPPP2dcN6/yopNLKUaPHs2gQYOYO3cul1xyCc2bN+eGG24gISGBZcuW0a9fP1q0aMF1113Hv//+e8ox5s6dS7du3WjevDm33347GzduzLV83759jBgxgvbt29OiRYtT1vGWqLz11lv06tWLFi1aMH/+/Dyfj9vt5oMPPqBfv340b96cbt268eKLL2K323M9n9tvv51x48bRunVrevfujdvtznN/27dvZ9iwYbRv35527dpxzz335BoVOXbsGM899xyXXHIJzZo1o2/fvsybN+8MZzzbggULaNCgAX/99RdXX301zZs3p1+/fnzzzTe+df744488S2/yKh9xOp08/fTTtGvXjrZt2zJq1CiSkpJOe/yTX/fExERGjRrFRRddRKtWrbjllltYu3atb3lSUhJPPvkk3bt3p2nTprRv356hQ4f6Lv5Gjx7NZ599xt69e33lc3mV0u3YsYP777+fTp060bJlS2699VZWr17tW+7d5uuvv+b++++nVatWtG/fnrFjx5KRkeFb759//uH222+nTZs2tGrVioEDB7Ju3boznvOcz9l7blesWMEdd9xBixYt6NSpEy+88MJp3wuQPZqxfPlyBg0alCsp8ho4cCA333wzISEhBX7O33zzDUOGDKFly5Z07NiRmTNnkpaWxqOPPkqbNm3o2LEjL7zwgq9U71y3y+/7qkePHkydOpXnn3+ejh070rx5cwYNGsSOHTt865xc2mQYBm+//TZXXHEFzZs359JLL+WNN97IVV746aefMmDAAFq2bEnz5s258sor+frrr32xeUegbrvtNl88J8dmt9uZMWMGvXr1olmzZlx22WXMnj0bj8eT6/k89thjzJ49m27dutGsWTNuuOEG1q9ff9rX1ysuLo6tW7eybds2XC4Xa9eupXXr1mfdLj/sdjuTJk2ia9euNG3alH79+vHVV1/5li9duvSU389t27bRvHlzHn30URYsWMCYMWMA6Nmzp6+MNj+f5XDm859fhw8fzrNktGHDhowZM4amTZsC2e+hvXv38tlnn9GgQQP27Nlz2lK9k+NPSUlhzJgxvs/eF154IdfrC6e+LzweD7Nnz+bSSy+ladOmXH755bz33nu5ttm1axeDBw+mQ4cOtGjRgv/7v//z6+ibiEhJViYSI4BHH32UqKgoxowZg8PhOO/9rV27lvfff5/Ro0fz3HPPsW3bNu6++26ee+457rnnHiZPnsz+/ft5+OGHc2134MABpk+fzoMPPsjkyZNJSUnh1ltvZd++fUD2BfcNN9zAhg0bePzxx3nppZfweDzcfPPNuRIQyP4jf9dddzFp0iQ6deqUZ5xPPPGEL1F59dVXufnmm3n//fcZMmRIrj/kq1atYv/+/cyYMYOHHnoIi8Vyyr4OHjzI//3f/7Fjxw7Gjx/PCy+8wOHDh7n99ttJTk4mKyuLm266iUWLFnHnnXcyc+ZM2rRpw2OPPcZrr72Wr/N6zz330LNnT6ZPn05cXBwPPvjgOf2R/vrrr9mwYQMTJ05k1KhR/Pjjj9x1111nvMj3Sk9P58Ybb+SPP/7gkUceYfr06QQGBnLHHXewY8cODMPgnnvu4ddff+Xhhx/mjTfeYNiwYaxYscJXyjJkyBC6du1KpUqVfInwyf777z8GDBjAnj17GDt2LC+++CImk4nbb7+dlStX5lp33LhxVK9enZkzZzJo0CDmzZvHq6++CkBaWhp33nknUVFRTJs2jZdffpnMzEwGDRrEsWPHCnTeHn74Ydq0acNrr71G3759mTNnDp9++ulp1//ll18ATjuvJjAwkCeeeIKLLrqowM957Nix1K9fn1dffZWLLrqIKVOmcO211xIUFMT06dO57LLLmDNnTq7k+Xy2y493332X7du389xzz/H000/zzz//MGrUqNOuP2nSJCZNmkSPHj147bXXuPbaa3nxxReZPXs2AB988AFPPPEEl1xyCbNmzeLFF1/EZrPx8MMPc+DAAZo0acITTzwBZP8u51UqZRgGgwcPZs6cOVx33XW89tpr9OrVi1deeeWU9ZcsWcLSpUsZO3YskydP5vDhw9x3331n/b24++67qVixIkOHDuW2224jPT2dZ599tqCnL8/Yhw4dyscff8z//vc/Xn31VVq1asXw4cP5/PPPgexkp3///syaNcuXmI0cOZLKlSvz2GOP0a1bN+69914Apk+fzpAhQ/J9/LOd//zq1q0bixcvZujQoXz55ZccPHjQt2zgwIFceOGFvvgqVapE165dmTt3LrGxsfnav8fj4c477+Snn35i1KhRTJw4kTVr1uRKIPMyfvx4pk6dSv/+/X3vi2effZYZM2b49nvPPfeQmZnJpEmTmDlzJpGRkdx7773s3Lkz389fRKS8KBOldAARERFMmDCBe++9t1BK6tLT03nllVeoU6cOACtXruTjjz/m7bff9l0E7ty5k+eff57U1FTCw8OB7BGcGTNm0Lx5cwBatGjBJZdcwnvvvceoUaN45513SE5O5qOPPqJ69eoAdOnShd69ezNlyhSmTp3qi+GKK67INe/gZP/99x/z5s3joYce8jUB6NSpE7GxsYwcOZKff/6Zrl27AuByuZgwYcIZ55y8/fbbOBwO3nrrLSpVqgRkfyN644038tdff7F37162bNnCxx9/TKtWrQDo3LkzLpeLmTNncsMNNxAZGXnG83rrrbcydOhQ37ZXX301M2b
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA3cAAAHJCAYAAAAmbMA6AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd1hUx9fA8S9VRJAi2BuiYEWxo9iwxII9sYIasMYeC6DGGhtYAXtXrLFgL9GoicbeSxBFxI4igiLS7/sHL/tzBRQUxXI+z8Oje+/cmXPvLsuenbkzGoqiKAghhBBCCCGE+KppZncAQgghhBBCCCE+niR3QgghhBBCCPENkOROCCGEEEIIIb4BktwJIYQQQgghxDdAkjshhBBCCCGE+AZIcieEEEIIIYQQ3wBJ7oQQQgghhBDiGyDJnRBCCCGEEEJ8AyS5E+ILpChKdofwTZHr+f2Q51oIIcT3TJK7dDg7O1O2bFmuXLmS5n4HBwfc3d0/Syzu7u44ODh8lra+Zxl5Tp2dnXF2dlY9tra2xsfHJ0vjOHfuHL1791Y9vn//PtbW1mzdujVL2/lQWXHOKef0rp/169d/dKwvXrxg5MiRnD17VrXt7ecws5YsWYKDgwNVqlShf//+PHnyJEPHOTg4vPN8hw4d+sExpWXr1q1YW1tz//79LK33S/bHH38wffr0TB1z6tQprK2tOXXq1DvLBQYGMnToUGrXrk358uWxt7dnyJAhBAQEZKo9Hx8frK2tM3WMEEIIkVHa2R3AlywxMREPDw+2bt2Krq5udocjvkAbN24kf/78WVrnH3/8QVBQkOpx3rx52bhxI0WLFs3Sdj5UVp5zv379qF+/fpr7ihQp8tH1//fff2zfvp327dt/dF0AGzZsYNasWYwePZr8+fMzfvx4PDw8WLZsWYaOr1evHr/88kua+0xMTLIkxhT169dn48aN5M2bN0vr/ZItWLCA6tWrZ3m9N2/epGPHjlSqVIkxY8aQJ08eHj9+jJ+fHx06dGD16tVUqlQpQ3X99NNP1KlTJ8tjFEIIIUCSu3cyNDTk5s2bzJs3L8u/VRffhox+oPsYurq6n6WdjMrKWIoWLfpFndv7HDlyhDJlyuDk5AQk97Ju2LAhw8ebmpp+tvM1NTXF1NT0s7T1rVuxYgUmJiYsWbIEbe3//dls1KgRTZs2Zf78+SxevDhDdeXPnz/LvxASQgghUsiwzHcoU6YMbdq0YenSpVy9evWdZdMaqvb28Bt3d3dcXV3ZuHEjjRo1wsbGhk6dOhEcHMzhw4dp2bIlFStW5KeffuK///5L1cbGjRupX78+NjY2dO/enevXr6vtf/jwIb/++ivVq1enYsWKqcqkDIVbsWIFTZs2pWLFimzZsiXN80lMTGTt2rW0bNkSGxsb6tevz4wZM4iNjVU7n+7duzNu3DgqV65M8+bNSUxMTLO+27dvM2DAAKpXr061atXo06ePWu/Uy5cvmTp1Ko0aNaJChQo4OjqyefPmd1zxZClDzy5dukTbtm2xsbGhZcuW7Nu3T1UmvWFXaQ3Pi4+P5/fff6datWpUrVoVNzc3wsPD023/7ef9yZMnuLm5YWdnh62tLU5OTly4cEG1Pzw8nAkTJtCgQQPKly9P9erV6d+/v2ronLu7O9u2bePBgweqoZhpDcu8c+cOgwYNonbt2lSqVAlnZ2fOnTun2p9yzN69exk0aBC2trZUr16dMWPGEB0drSp39epVunfvTpUqVbC1taVHjx5cvHjxndf8zXNOubYnTpzAxcWFihUrUrt2bby8vNJ9LXyIgIAABgwYQM2aNSlXrhx16tTh999/JyYmRi0uX19f2rVrh42NDb6+vnTr1g2Abt26qT3XiqKwZMkS1e9Tx44duXz58nvjsLCw4ObNmwQFBZGQkMCFCxeoXLlylp3nm+eydu1aRo8eTfXq1bG1tWXw4MGEhYUBsHDhQsqXL09kZKTacStXrqRcuXI8e/Ys1bDM9H5fY2NjmTdvHk2bNqVChQo0adKExYsXk5SUpKrX2dmZ0aNHs3jxYurXr0+FChXo1KmT2jXz8fGhadOm/Pnnnzg6OlKhQgVat27NhQsXuHjxIj/99BM2NjY4Ojpy4sQJtbgDAwPp06cPlStXpnLlyvTv35979+6p9mfkdebg4MCDBw/Ytm2b2nmfOXMGV1dXqlWrRvny5XFwcMDHx0ft/N4nLCwMRVFSHaOvr8+oUaNo1qyZ2nZ/f3/atm1LxYoVqV+/PjNnziQuLk51nd4elnnw4EHatWtHhQoVqF27Nr///rva76mPjw+NGzfmyJEjtGzZkvLly/PDDz/g7++vVs/73n+SkpJYvHgxjRs3VtWxZs0atTru3r1L3759qVGjBhUrVqRjx44cPXo0w9dKCCFE9pLk7j1GjRqFiYkJHh4eqj/OH+PChQv4+fnh7u7O1KlTCQoKonfv3kydOpU+ffowa9YsHj16xPDhw9WOe/z4Mb6+vgwZMoRZs2YRGRmJs7MzDx8+BJKThk6dOnHt2jV+++03Zs6cSVJSEl27dlVLoiD5g0KvXr3w9PSkdu3aacY5duxYVbK1YMECunbtip+fH7/88ovahAVnz57l0aNHzJs3j2HDhqGlpZWqrtDQUDp27MidO3cYP348Xl5ehIWF0b17dyIiIoiJiaFLly7s3LmTnj17Mn/+fKpUqcLo0aNZuHBhhq5rnz59aNiwIb6+vlhYWDBkyJAP+kCyd+9erl27xrRp03Bzc+PIkSP06tUrQ4nKq1ev6Ny5M6dOnWLEiBH4+vqSI0cOXFxcuHPnDoqi0KdPH44fP87w4cNZtmwZAwYM4MSJE4wbNw6AX375hXr16mFubq5K5t9269Yt2rVrx/379xkzZgwzZsxAQ0OD7t27c/r0abWy48aNo1ChQsyfPx9XV1c2b97MggULAIiKiqJnz56YmJjg4+PD7Nmzef36Na6urrx8+TJT12348OFUqVKFhQsX4ujoyNKlS/njjz/ee1xSUhIJCQmpft683k+ePKFr1668fv2aadOmsWTJElq0aMGaNWtYvXq1Wn0LFy6kZcuWeHt706hRI8aOHQskv55TrjEk97j9+eef/Pbbb3h5efHkyRP69etHQkLCO+Pt3bs3pqam9O/fn27duvHq1SumTJmS4eukKEqa55tWu7NnzyYpKYlZs2YxcuRIDh8+rGqrZcuWJCQkcODAAbVjdu/ejb29PXny5Emz/bd/XzU1Nenbty9Lly7lp59+YuHChTRt2pQ5c+aoXS+A/fv3c+jQIcaMGcOsWbMICwtj4MCBas/V48ePmTZtGn379mXu3Lm8ePGCQYMG8euvv/LTTz8xb948FEVh6NChqsQ8ODiYTp068ezZM6ZPn87kyZO5d+8enTt35tmzZ2oxvOt15uvri7m5OfXq1VMNRw0ICKBHjx4YGxsze/ZsFixYQNWqVfH19WXv3r0Zft7q16/Pw4cP6dSpE2vXriUoKEj1Pti0aVPatm2rKrt27Vrc3NwoV64cvr6+9O7dmzVr1vD777+nWffOnTvp378/JUqUYN68eQwYMIAdO3akeq99+vQpEydOpFu3bixevJjChQvj5uamen9/3/sPwPjx4/H29qZVq1aq53rKlCnMmzcPSP597NOnD69fv8bT05P58+djbGxMv379CAkJyfD1EkIIkY0UkSYnJyfFyclJURRFOXTokGJlZaXMmjVLtb9BgwaKm5ub6rGVlZXi7e2tVoe3t7diZWWleuzm5qZYWVkpt27dUm0bO3asYmVlpfz777+qbcuWLVOsrKyUyMhIteMuXbqkKvPkyRPFxsZGmTZtmqIoijJr1iylQoUKyv3791VlYmNjlYYNGyoDBw5UFEVR7t27p1hZWSmjRo1657nfvHlTsbKyUhYtWqS23d/fX7GyslKOHDmiFtejR4/eWd+0adMUGxsb5cmTJ6ptjx49UurXr68cOXJEWbt2rWJlZaWcP39e7bhRo0YpFSpUUJ4/f55u3Vu2bFGsrKwUX19f1bakpCSldevWyk8//aQoiqKcPHlSsbKyUk6ePKl27JvPsaI
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA1EAAAHJCAYAAABkL7OtAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeVxN+f/A8VdSEonsa2UpTEq2ULZikJ3BoIzJli1kq8GUtYhI2SL7OmisYxkNRmaGsYwxDJlEdtmF9vv7o1/n66pUlJT38/G4j+me5XM+n8+9c5z3/XzO+2ioVCoVQgghhBBCCCEypUBuV0AIIYQQQggh8hIJooQQQgghhBAiCySIEkIIIYQQQogskCBKCCGEEEIIIbJAgighhBBCCCGEyAIJooQQQgghhBAiCySIEkIIIYQQQogskCBKCCGEEEIIIbJAgighRJrkOdxCCCGEEGmTIOoT5ujoSO3atblw4UKa621tbXFzc/sodXFzc8PW1vajHOtzlpnP1NHREUdHR+W9qakp/v7+2VqPM2fOMGTIEOX9rVu3MDU1JTg4OFuP876yo80pbXrXa/PmzdlU40/DyZMnMTU15eTJkzl+rPDwcJycnLC0tKR169b8+OOPmdrP398/1edQt25dunTpwpYtW3Kkrjnx/5AQQoj8rWBuV0C8W2JiIu7u7gQHB6OtrZ3b1RGfoK1bt1KuXLlsLXPbtm2Eh4cr78uUKcPWrVupUqVKth7nfWVnm4cNG0bLli3TXFe5cuVsOcan4osvvmDr1q1Ur149R48TFxfH4MGDKVu2LIsXL+bAgQO4u7tjZGSEpaVlpsrYunUrAElJSURHR/Prr7/i4eGBpqYmPXv2zNb65sT/Q0IIIfI3CaI+cXp6ely9epXFixczduzY3K6O+ATVrVs3x4+hra39UY6TWdlZlypVqnxSbctJRYsW/ShtDQsL4/bt20yZMoWmTZtSt25dtm7dyrlz5zIdRL1dz+bNm3P58mW2bNmS7UHU5/L5CyGEyD4yne8TV6tWLbp27crKlSv5559/3rltWlNSUqbGpHBzc2PgwIFs3bqV1q1bY25uztdff01ERARHjhyhU6dOWFhY0LNnT/79999Ux9i6dSstW7bE3Nycb775hkuXLqmtv3PnDq6urjRq1AgLC4tU26RMoVq9ejXt2rXDwsKCHTt2pNmexMRENm7cSKdOnTA3N6dly5bMmzeP2NhYtfZ88803eHh4UK9ePezt7UlMTEyzvGvXrjFy5EgaNWpEw4YNGTp0qNpoy4sXL/Dy8qJ169bUqVOHjh07sn379nf0eLLg4GBMTU05f/483bp1w9zcnE6dOnHgwAFlm/SmUb09NQ8gPj6emTNn0rBhQxo0aMCkSZN4/Phxusd/+3N/8OABkyZNokmTJlhaWuLg4MC5c+eU9Y8fP2batGm0atUKMzMzGjVqxIgRI7h165bSpz/++CO3b99WpvClNZ3v+vXruLi4YG1tTd26dXF0dOTMmTPK+pR99u/fj4uLC5aWljRq1IgpU6bw6tUrZbt//vmHb775hvr162NpacmAAQP466+/3tnnb7Y5pW9///13nJycsLCwwNraGh8fn3S/C+8jo36NjY1l8eLFtGvXjjp16vDll18SGBhIUlKSso2joyOTJ08mMDCQli1bUqdOHb7++mv+/vtvtWNduHCBgQMHYmVlRb169XB2dubq1avK+jfb7OjoqPz/sW3bNh48eMDIkSOxtLSkRYsWrFmzJtV+b34P//rrL5ycnKhXrx6NGzfG1dWV+/fvK+vXrl2rtKlZs2Z4enoSHR39zr6qUKEC2traHDp0CIBTp04BZDqASk+xYsXQ0NBQ3qc1zTit72pGbXif71NSUhKBgYG0adMGMzMz2rZty/r169XqEhkZibOzM1ZWVlhYWNC7d2+OHTumrI+JicHT05PmzZtjZmZGu3btCAoK+qA+EkII8XFIEJUHfPfdd5QoUQJ3d3fi4uI+uLxz586xYcMG3Nzc8PLyIjw8nCFDhuDl5cXQoUPx9fXl7t27jB8/Xm2/e/fuERAQwJgxY/D19eXZs2c4Ojpy584dIPni/Ouvv+bixYtMnTqV+fPnk5SURL9+/dSCFUgO7gYPHszcuXOxtrZOs57ff/+9EtQsXbqUfv36sWHDBoYPH66W9OD06dPcvXuXxYsXM27cODQ1NVOVdf/+fXr37s3169fx9PTEx8eHhw8f8s033/D06VNiYmLo27cve/bsYdCgQSxZsoT69eszefJkli1blql+HTp0KHZ2dgQEBGBsbMyYMWPULpgya//+/Vy8eBFvb28mTZrE0aNHGTx4cKYCgpcvX9KnTx9OnjzJhAkTCAgIoFChQjg5OXH9+nVUKhVDhw7lxIkTjB8/nqCgIEaOHMnvv/+Oh4cHAMOHD6dFixaULl1aCZrf9t9//9G9e3du3brFlClTmDdvHhoaGnzzzTfKBXMKDw8PKlasyJIlSxg4cCDbt29n6dKlAERHRzNo0CBKlCiBv78/CxYs4PXr1wwcOJAXL15kqd/Gjx9P/fr1WbZsGR07dmTlypVs27Ytw/2SkpJISEhI9XqzvzPTr87OzqxcuZKePXuybNky2rVrx8KFC5V+TXHw4EFCQkKYMmUKvr6+PHz4kFGjRinH++OPP+jTpw8As2fPZubMmdy9e5evv/461f9Hrq6u2Nrasnz5coyNjfHw8KB///7UqFGDJUuWYG5ujpeXV6ogLcWlS5dwcHAgNjaWuXPnMm3aNP755x8GDhxIQkICe/fuxcfHh379+hEUFMSIESPYtWsXM2bMeGefGhgYMGrUKH788UfGjRuHq6srbm5uWQqi3vwsnj9/zt69e/n1119xcHDIdBnAe7cho++Tp6cnixYtonPnzsrnPXv2bBYvXgwkf6+GDh3K69evmTt3LkuWLKF48eIMGzaMGzduAMmf76+//sqkSZMICgrCzs6OuXPnpvvDkhBCiE+HTOfLA/T19Zk+fTrDhg3Llml9L1++ZOHChVSrVg1I/pV4y5YtrFmzhiZNmgBw48YN5syZw/PnzylWrBiQPDK0ePFizM3NAbCwsKB169asX7+eSZMmsXbtWp4+fcrmzZupWLEikDwFx97eHj8/PxYtWqTUoX379vTo0SPdOv73339s376dcePGKQkOrK2tKVOmDBMnTuTXX3+lRYsWQPLF1vTp0995T8OaNWuIi4tj9erVlC5dGoCaNWvSp08fzp8/z+3btwkLC2PLli3KhV6zZs1ISEhgyZIlfP311xQvXvyd/ero6MiIESOUfbt168bixYuVemZWiRIlCAoKQldXV3k/YsQIfv31V1q1avXOfVNGkH788Udq1aoFQL169ejatSt//vknhQsXpnDhwkyaNIkGDRoAYGVlRWRkpHIPSpUqVTAwMFCbwvfmyBFAQEAA2trarFu3jqJFiwLQsmVLOnbsyNy5c9VG8Fq0aMGkSZMAaNKkCSdOnODo0aOMGzeO//77jydPntC/f3/q1asHQNWqVdm6dSsvX75ET08v0/3Ws2dPpf+bNGnC4cOHOXr0KF9//fU795s8eTKTJ09OtVxXV1cZacqoX2/cuMFvv/2Gr68vHTp0AJK/rzo6Ovj5+SmBDSR/X4OCgpR+e/nyJZMmTeLff//FzMyM+fPnY2hoSGBgoPKDgI2NDW3atGHRokX4+fkpdezRowfffvutUt9evXphbm7O6NGjgeTv+KFDhzh79qzy/+2bli1bRvHixVm1ahWFChUCku9/GzduHFevXuXUqVNUqlSJfv36UaBAARo1aoSuri7Pnj17Z5/GxcWRmJiIhoYGe/fuZeTIkUo9M+uLL75ItczW1hZ7e/sslfO+bXjX9ykiIoIffvgBV1dX5fxkY2ODhoYGy5cvp2/fviQkJHDt2jXlRwkAc3NzAgIClB/DTp06hbW1tfKdsbKyQldXl5IlS2apjUIIIT4+CaLyCFtbWzp37szKlSv58ssv07zAyCx9fX0lgAIoVaoUkBwUpUgJGN4MoipXrqx2IVa6dGnq1q3Ln3/+CcDvv/9OrVq1KFu
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA3gAAAHJCAYAAADXZ5u3AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzddVxU2fvA8Q8pIggqWIiFgkFYqIgJ69q9JqCIvSpriy22YiHYYOua2K7u6tprd3cnBihKc39/8GO+joSAKMbzfr146dx77jnPPTMM88w591wNRVEUhBBCCCGEEEJ89zQzOwAhhBBCCCGEEBlDEjwhhBBCCCGE+EFIgieEEEIIIYQQPwhJ8IQQQgghhBDiByEJnhBCCCGEEEL8ICTBE0IIIYQQQogfhCR4QgghhBBCCPGDkARPCCGEEEIIIX4QkuAJkUkURcnsEMRPICNfZ/KaFUIIIb59P3WC5+bmRqlSpbhw4UKS+52cnPDy8voqsXh5eeHk5PRV2vqZpeY5dXNzw83NTfXYysoKPz+/DI3j1KlTdO3aVfX44cOHWFlZERQUlKHtpFdGnHPCOaX08+eff2ZQxP/z8fOXlI9/377m7zpAVFQUU6ZMoWrVqlSsWJEhQ4YQFhaW6uODgoJo06YN5cqVw87OjgYNGuDr65uojjlz5hAYGJghMd+4cYO2bdtmSF0f8/Pzw8rKKt3HOzk5ffK1lhG/w0FBQVhZWfHw4cPPris1UvNaTo/P7W8hhBDfNu3MDiCzxcbGMmTIEIKCgtDV1c3scMQ3aM2aNeTNmzdD61y3bh23bt1SPc6dOzdr1qyhYMGCGdpOemXkOffo0YOaNWsmuc/c3DxD2vhc/v7+GBgYfLX2/Pz8+PPPPxk9ejQaGhqMGjUKHR0dxowZ88lj/f39mTdvHh4eHvTo0QMdHR0uXrxIQEAABw8e5M8//0RHRwcAX19fevXqlSEx79y5kzNnzmRIXR9r2bIl1apVS/fx/v7+REVFqR736tWLUqVK8fvvv6u2ZfTv8Pfsc/tbCCHEt+2nT/AMDQ25ceMGs2fPpm/fvpkdjvgGlSlT5ou3oaur+1XaSa2MjKVgwYLf1LklpVSpUl+1vX379lG1alWaNGkCwO7du1OVPEVFRbFw4UI6deqk9n5VpUoVihYtSs+ePdm9ezf16tX7YrF/CXnz5v2sBOzj509XV5ecOXN+86+7zPK5/S2EEOLb9lNP0QQoWbIkTZs2JSAggIsXL6ZYNqlpPh9PdfHy8qJTp06sWbOGX375BVtbW9q0acOdO3fYu3cvjRo1ws7OjpYtW3LlypVEbaxZs4aaNWtia2tLhw4duHz5str+x48f069fPypWrIidnV2iMgnT4hYvXkzdunWxs7Njw4YNSZ5PbGwsK1eupFGjRtja2lKzZk2mTp1KZGSk2vl06NCBUaNGUa5cOerXr09sbGyS9d2+fZtevXpRsWJF7O3t6datm9oo1du3b5k4cSK//PILNjY2NGzYkPXr16fQ4/ESpkWdO3eOZs2aYWtrS6NGjdi5c6eqzLFjx7CysuLYsWNqxyY1xSk6Oppx48Zhb29PhQoVGDx4MK9evUq2/Y+f9+fPnzN48GAcHBwoW7Ysrq6uah/OX716hbe3N7Vq1cLa2pqKFSvSs2dP1bQuLy8vNm7cyKNHj1TTMpOaonn37l08PT1xdHSkTJkyuLm5cerUKdX+hGP++usvPD09KVu2LBUrVmT48OG8f/9eVe7ixYt06NCB8uXLU7ZsWdzd3Tl79myKff7hOSf07ZEjR/Dw8MDOzg5HR0d8fHySfS2kVWrb+FTffmj27NlUqVKFsmXL8vvvv/PgwYNk2/9wimZq+zU6OpqpU6dSvXp1bG1t6dSpE5s2bUrVFL4iRYpw4sQJXr16RVhYGJcvX6Zs2bKf7KewsDAiIiKIi4tLtK9GjRr07dtXNSqa8L7k7++v+r+fnx+1a9fG39+fihUrUrVqVUJDQ4mIiGDatGn8+uuvWFtbU65cOTp27Kh6j/Lz88Pf319Vb8JrIy4ujgULFlC7dm2sra2pU6cOy5cvTxRbYGAgzs7OqvfDf//9V+33Nakpg5s2baJZs2bY2dlRs2ZNpk2bpjZKlx7r1q2jQYMGWFtbU7NmTfz8/BK9hvfv30+bNm0oU6YMVatWZeTIkbx580atzLlz52jTpg02NjbUrFmTgIAA1b7Uvn5S8/77scjISGbPnk3dunWxsbHh119/ZcGCBYleD+np7927d9O8eXNsbGxwdHRk3LhxavFGREQwevRoqlevjrW1NXXr1s2w6b9CCCEy1k8/ggcwdOhQDh8+zJAhQ9iwYcNnT9U8c+YMz58/x8vLi8jISEaPHk3Xrl3R0NDA09OTrFmzMmrUKAYMGMD27dtVxz19+hR/f3/69++PgYEB/v7+uLm5sXXrVvLnz8+rV69o06YNWbNmZcSIEWTNmpWlS5fi4uLC+vXrsbCwUNXl5+fHsGHDMDAwwM7OLsk4R44cyebNm+nSpQsVKlTg8uXLzJ49mytXrhAQEICGhgYAJ0+eJEuWLMyePZv379+jpaWVqK5nz57RunVr8uTJw+jRo9HX18fPz48OHTqwbds29PT0aNeuHS9fvsTT0xMzMzN2797NsGHDePHiBd27d/9kv3br1g1XV1f69u3L+vXr6dOnD/Pnz6dGjRppen7++usv7OzsmDRpEq9evWLq1KncvHmTtWvXJnluH3r37h1t27YlNjaWgQMHkidPHhYtWoSHhwcbN26kUKFCdOvWjdDQUAYMGICJiQnXrl1j5syZjBo1isDAQH7//XdevXrF5cuX8ff3p2DBgmofpABu3rxJq1atKFy4MMOHD0dHR4dly5bRoUMHFi1aRMWKFVVlR40aRYsWLZgzZw7nz59nxowZ5MiRg/79+xMWFkbnzp2pXLkyfn5+REVFMXfuXDp16sS+ffswNDRMdb8NGDCAdu3a0aVLF/bt20dAQADm5ua0adMmxePi4uKIiYlJtF1DQyNRf6fUhqIon+zbBKdOneLly5eMHDmS2NhYpk2bRvv27dm6dWuqp2Km1K8Q//uzbds2evfuTcmSJdm2bRsjRoxIVd39+vWjRYsWdO/enffv35MvXz4GDRr0yeNy5syJnZ0dgYGBPH/+nNq1a1OuXDly5syJjo6O2u/RmjVraN26Nb/99hstW7ZUbX/8+DH79+9nxowZhISEYGRkhKenJydPnqRfv34ULFiQe/fu4evrS//+/dm+fTstW7bk6dOnrF+/Xm367ujRowkKCqJbt26ULVuWEydOMGHCBN68eUPPnj2B+ARz9uzZdOrUicqVK3Pw4EH69OmT4nmuXLmSMWPG0LJlS/r168eDBw+YMmUKoaGhqZrGmpT58+czY8YMXF1dGTJkCFeuXMHPz48nT54wYcIEAPbu3UuPHj1wdnZm5syZhISEMGXKFB49eqT2+ho9ejSenp788ccfrF27Fh8fHywsLKhVq5aqTGpeP6l5/02gKArdu3fn7Nmz9OrVixIlSnDs2DFmzpzJgwcPGDt2bLr7e+vWrQwYMIBGjRrRp08fHj16xIwZM7h58yaLFy9GQ0ODCRMmcOjQIQYPHoyJiQkHDhxgypQpGBsb06JFi3Q9J0IIIb4Q5Sfm6uqquLq6KoqiKHv27FEsLS2V6dOnq/bXqlVLGTx4sOqxpaWlMmvWLLU6Zs2apVhaWqoeDx48WLG0tFRu3ryp2jZy5EjF0tJS+e+//1TbAgMDFUtLSyU0NFTtuHPnzqnKPH/+XLG1tVUmTZqkKIqiTJ8+XbGxsVEePnyoKhMZGak4OzsrvXv3VhRFUR48eKBYWloqQ4cOTfHcb9y4oVhaWirz589X275p0ybF0tJS2bdvn1pcT548SbG+SZMmKba2tsrz589V2548eaLUrFlT2bdvn7Jy5UrF0tJSOX36tNpxQ4cOVWxsbJTXr18nW/eGDRsUS0tLxd/fX7UtLi5OadKkidKyZUtFURTl6NGjiqWlpXL06FG1Yz98jhUl/jmtUqWK8u7dO9W2f/75R7G0tFT+/fffJI/58Hl
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABNUAAAHJCAYAAACi+g9VAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeVxN+f/A8VdSEslO9myFSLaQtRj7OjP2LGE0lqxDIWQrFcm+Zc02SLJvYxjGMsYuNKXdMnZF2n9/9Ot8u9qJMO/n43EfdLbP53zOuZ9z7/t+FrXExMREhBBCCCGEEEIIIYQQWZYntzMghBBCCCGEEEIIIcTXRoJqQgghhBBCCCGEEEJkkwTVhBBCCCGEEEIIIYTIJgmqCSGEEEIIIYQQQgiRTRJUE0IIIYQQQgghhBAimySoJoQQQgghhBBCCCFENklQTQghhBBCCCGEEEKIbJKgmhBCCCGEEEIIIYQQ2SRBNSHEVy0xMTG3syCEEEIIIYQQ4j9Igmrio1laWlKzZk1u3ryZ5npzc3NsbW0/S15sbW0xNzf/LGn9l2XlmlpaWmJpaan8bWBgwNKlS3M0H3///Tc//fST8ndYWBgGBgZ4eXnlaDofKifOOfmcMnpt3749h3L8P+9fvy+BvL+FEEIIIYQQX5K8uZ0B8W2Ij4/Hzs4OLy8vNDU1czs74gu0c+dOSpcunaPH3LVrFwEBAcrfJUuWZOfOnVSoUCFH0/lQOXnOP//8M61atUpzXfny5XMkjZRmzpyZ48f8WCNHjmTgwIG5nQ0hhBBCCCGEACSoJnKIjo4O//zzD8uXL2f8+PG5nR3xBapbt+4nT0NTU/OzpJNVOZmXChUqfNZzq1q16mdLK6u+lGCpEEIIIYQQQoB0/xQ5pEaNGnTv3p1169Zx69atDLdNq0vc0qVLMTAwUP62tbVl6NCh7Ny5kzZt2lCnTh369OlDYGAgp06dokuXLhgbG/Pjjz9y586dVGns3LmTVq1aUadOHQYNGoSvr6/K+gcPHjBhwgQaNWqEsbFxqm2Su9xt2LCB9u3bY2xszJ49e9I8n/j4eLZu3UqXLl2oU6cOrVq1wtXVlejoaJXzGTRoEDNnzqRevXp07NiR+Pj4NI93//59Ro8eTaNGjWjYsCEjRoxQaY0VERGBo6Mjbdq0oXbt2nTu3Jndu3dnUOJJvLy8MDAw4Pr16/To0YM6derQpUsXjhw5omxz8eJFDAwMuHjxosq+aXUFjI2NZe7cuTRs2JAGDRowZcoUnj9/nm7671/3f//9lylTptCkSRNMTEwYMGAAV69eVdY/f/4cBwcHWrdujZGREY0aNWLUqFGEhYUpZbp3717Cw8OVLp9pdf8MCgrCxsYGMzMz6tati6WlJX///beyPnmfw4cPY2Njg4mJCY0aNWL69Om8fftW2e7WrVsMGjSI+vXrY2JiwuDBg7l27VqGZZ7ynJPL9vz581hZWWFsbIyZmRkuLi7p3gvZldU0IiMjmTFjhlL248ePZ+PGjSrvwbS6727dupVp06bRqFEjTExMGDt2LE+fPlXJw4kTJ+jZsye1a9fGzMyMuXPnqpQjgJ+fHyNGjKBevXrUq1ePUaNGERoamuo8duzYQevWralXrx7nzp1L1f3T3NycJUuWsGDBApo2bUqdOnUYOnQoQUFBKunt3buXjh07Urt2bbp27cr58+epWbPmF9NNWAghhBBCCPF1kqCayDFTp06lSJEi2NnZERMT89HHu3r1Kp6entja2uLo6EhAQAA//fQTjo6OjBgxgkWLFvHw4UMmTZqkst+jR49YtmwZ48aNY9GiRbx69QpLS0sePHgAJAVr+vTpw+3bt7G3t2fhwoUkJCTQv39/leAVJAX7hg8fjrOzM2ZmZmnmc8aMGUqQa+XKlfTv3x9PT09GjhypMoj+5cuXefjwIcuXL2fixImoq6unOtbjx4/p3bs3QUFBzJo1CxcXF54+fcqgQYN4+fIl7969o1+/fuzfv59hw4axYsUK6tevz7Rp01i1alWWynXEiBFYWFiwbNky9PX1GTduHKdPn87SvikdPnyY27dv4+TkxJQpU/j9998ZPnx4lgJEb968oW/fvly8eJFffvmFZcuWkS9fPqysrAgKCiIxMZERI0Zw7tw5Jk2ahIeHB6NHj+b8+fNKt8SRI0fSsmVLSpQooQRR3+fv70/Pnj0JCwtj+vTpuLq6oqamxqBBg7h06ZLKtjNnzqRs2bKsWLGCoUOHsnv3blauXAkkBaGGDRtGkSJFWLp0KW5ubkRFRTF06FAiIiKyVW6TJk2ifv36rFq1is6dO7Nu3Tp27dqV6X4JCQnExcWleqVV3pmlMXLkSA4fPsyYMWNwc3PjzZs3LFy4MNM8uLm5kZCQwKJFi5g8eTKnTp1i/vz5yvr9+/czatQoKleuzPLlyxk9ejQ+Pj4q74XAwED69OnDs2fPWLBgAfPmzSM0NJS+ffvy7NkzlfSWLVvGlClTmDFjBiYmJmnmafPmzdy/fx9HR0fmzp3LrVu3mDJlirLe29sbW1tb6tWrx4oVK2jXrh0jR47MsUCmEEIIIYQQ4r9Lun+KHKOrq8vs2bP5+eefc6Qb6Js3b1i8eDFVqlQB4NKlS+zYsYONGzfSpEkTAIKDg1mwYAGvX7+mUKFCQFLLseXLl1OnTh0AjI2NadOmDVu2bGHKlCls2rSJly9fsn37dsqWLQtAixYt6NixI+7u7ixZskTJQ4cOHfj+++/TzaO/vz+7d+9m4sSJyoD5ZmZmlCxZksmTJ3PmzBlatmwJQFxcHLNnz85wjK2NGzcSExPDhg0bKFGiBACGhob07duX69evEx4ejp+fHzt27FCCDM2bNycuLo4VK1bQp08fChcunGG5WlpaMmrUKGXfHj16sHz5ciWfWVWkSBE8PDzQ1tZW/h41ahRnzpyhdevWGe6b3MJs79691KhRA4B69erRvXt3/vrrL/Lnz0/+/PmZMmUKDRo0AMDU1JSQkBB27twJJHUFLFq0qEqXz/dbRC1btgxNTU02b95MwYIFAWjVqhWdO3fG2dlZpYVfy5YtlWBMkyZNOHfuHL///jsTJ07E39+fFy9eMHDgQOrVqwdA5cqV2blzJ2/evEFHRyfL5fbjjz8q5d+kSRNOnDjB77//Tp8+fTLcb9q0aUybNi3Vcm1tbZUWfpmlcf78eS5evMjSpUv57rvvgKT7v3PnzqmCyu+rXr06jo6Oyt83btxQWjomJibi6upK8+bNcXV1VbapVKkSgwcP5vTp07Rq1Yply5aRP39+Nm7cqFyTJk2a0KZNG9atW6cSEOvXrx/t27fPME+FChVixYoVSpA6JCSEpUuX8uLFC4oUKYK7uzutW7dm7ty5QNI9r6GhkaUgohBCCCGEEEJkRFqqiRxlbm5O165dWbduHbdv3/6oY+nq6ioBNYDixYsDSUGyZMkBpNevXyvLypcvrwTUAEqUKEHdunX566+/ADh//jw1atSgVKlSSmufPHny0KJFC/7880+VPCQHfNKT3NqpU6dOKss7deqEurq6SjfKwoULZzpo/d9//03dunWVgBpA6dKlOXXqFC1btuTSpUuULVs2Vaudrl27Eh0dzfXr19Ns0ZRSjx49lP+rqanRtm1bbty4wbt37zLM2/tatmypBNQg6drnzZtXKefMzrNcuXIq5Zs/f36OHj3Kjz/+SKlSpdi8eTP169cnLCyMc+fOsWXLFq5cuZKtVpCXLl2idevWSvAGIG/evHTq1Ilbt27x5s0bZfn745WVLl1aCdJVq1aNokWLYm1tzYwZMzh+/DjFixfnl19+yfZEBO9fu5TpZGT06NHs3r071Wvr1q3ZSuPChQtoaGjQpk0bZX2ePHno2LFjpnlIq4yioqKApG7Ljx49wtzcXOXea9iwIQULFuTcuXNK+o0aNUJLS0vZpmDBgjRo0CDb7z+A2rVrq7T6TL4eUVFRBAcH8+DBg1SBufffr0IIIYQQQgjxIaSlmshx06dP5/z589jZ2aU7DllWpAyEpJQykJOW5OBbSsWKFePhw4cAvHz5kuDgYGrVqpXm/slBgqy
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAxoAAAHJCAYAAAACdU/6AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAADSsklEQVR4nOzdZ3RU1deA8WdqeoOEXkJLACGA9CYQ7BQRXruof1AQA6ggClJERUGaSrE3lKqCFBFRkSKIIAhIkV5DT+9T7/shzCQhCaRMS7J/a7mWmXvn3D2Twt1zzt5HpSiKghBCCCGEEEI4kNrdAQghhBBCCCHKH0k0hBBCCCGEEA4niYYQQgghhBDC4STREEIIIYQQQjicJBpCCCGEEEIIh5NEQwghhBBCCOFwkmgIIYQQQgghHE4SDSGEEEIIIYTDSaIhhCgy2d/TMSra+1jRXq8QQohskmiUMQMHDqRp06bs37+/wOPR0dGMHTvWJbGMHTuW6Ohol1yrIivK93TgwIEMHDjQ/nVkZCRz5851aBy7d+9myJAh9q9jY2OJjIxkxYoVDr1OSTniNd/sNa1YsYLIyEhiY2ML/PpmUlJSePnll9m1a1ep4rRxxu/79T9LBTGbzXz11Vfcf//9tGzZklatWnH//ffzxRdfYDQa7ecZjUbefvtt1qxZ45DYrn+9zvg5F0II4Thadwcgis9isTBu3DhWrFiBXq93dzjCAy1btoxq1ao5dMzvvvuOEydO2L+uUqUKy5Yto06dOg69Tkk54zXfTPfu3Vm2bBlVqlQp0vn//fcfq1atYsCAAQ65/rx58/D393fIWMUxceJEfvnlF4YMGUKzZs2wWq3s2rWL9957j927dzN//nwArly5woIFC5g6dapT4nDH91wIIUTRSaJRBgUEBHDs2DHmz5/Piy++6O5whAdq2bKl06+h1+tdcp2ickcslSpVolKlSi6/rk3Tpk1dfs0LFy7www8/8MYbb/Dggw/aH+/atSuVKlXi7bff5t9//yUqKsrpsXjSz58QQoj8ZOlUGdSkSRP69evHZ599xoEDB254bkFLC+bOnUtkZKT967FjxzJ48GCWLVvG7bffTlRUFA8//DCnTp1i48aN9OnThxYtWvDAAw/w33//5bvGsmXL6N69O1FRUTz55JMcOnQoz/ELFy4watQo2rVrR4sWLfKdY1uu8uWXX3L33XfTokULli9fXuDrsVgsLFq0iD59+hAVFUX37t2ZOXMmBoMhz+t58sknee2117j11lu59957sVgsBY538uRJhg8fTrt27Wjbti1Dhw7N86l9amoqU6dO5fbbb6d58+b07t2b77///gbveDbbkpp9+/Zx//33ExUVRZ8+ffj555/t5+zYsYPIyEh27NiR57kFLV0xmUxMmTKFtm3b0qZNG1555RUSEhIKvf713/crV67wyiuv0LFjR1q1asXjjz/Onj177McTEhJ4/fXX6dGjB82aNaNdu3bExMTYlwSNHTuWH374gfPnz9uXFhW0zOj06dOMHDmSzp0707JlSwYOHMju3bvtx23PWbduHSNHjqRVq1a0a9eOCRMmkJGRYT/vwIEDPPnkk7Ru3ZpWrVrx1FNPsXfv3hu+57lfs+293b59O4MGDaJFixZ07tyZGTNmFPqzUBLXL51KSEhg9OjRdO7cmebNm3PfffexcuVKe0xPPPEEAE888USe7/FPP/1E//79adWqFZ07d2bSpEkkJyfbj8+dO5c77riDefPm0a5dO7p06UJycnK+pURpaWm8+eabdO3alZYtWzJgwAA2bdpkP56VlcWsWbO48847adasGbfeeiv/+9//Cvy9LkxcXByKomC1WvMd69OnD6NGjSIwMJDY2Fh69uwJwLhx4+zLLAv6+S7od+Hw4cP873//o1WrVvTo0YPVq1fnu971P+dJSUlMmjSJTp060bx5cx588EG2b9+e5znbtm3jwQcfpFWrVrRt25Zhw4bl+Z0XQgjhOJJolFGvvvoqISEhjBs3Ls+a6JLas2cPCxcuZOzYsUydOpUTJ04wZMgQpk6dytChQ5k9ezYXL17kpZdeyvO8S5cuMW/ePF544QVmz55NcnIyAwcO5MKFC0D2jdfDDz/MwYMHmThxIrNmzcJqtfLYY4/l+8d97ty5PPPMM0yfPp3OnTsXGOekSZPsN/4ffvghjz32GAsXLuS5557LU3C6a9cuLl68yPz58xk9ejQajSbfWJcvX+ahhx7i9OnTTJ48mRkzZhAXF8eTTz5JUlISWVlZPProo6xZs4ann36aDz74gNatWzN+/Hg++uijIr2vQ4cOpWfPnsybN4969erxwgsvsHnz5iI9N7d169Zx8OBBpk2bxiuvvMKmTZt45plninTTnJ6eziOPPMKOHTsYM2YM8+bNw8vLi0GDBnH69GkURWHo0KFs27aNl156ic8//5zhw4ezfft2XnvtNQCee+45unXrRlhYmD2xvN7x48fp378/sbGxTJgwgZkzZ6JSqXjyySfZuXNnnnNfe+01atasyQcffMDgwYP5/vvv+fDDD4Hsm+Wnn36akJAQ5s6dy7vvvktmZiaDBw8mNTW1WO/bSy+9ROvWrfnoo4/o3bs3n332Gd99991Nn2e1WjGbzfn+K+jmOrcxY8Zw4sQJXn/9dT799FOaNm3KK6+8wl9//cUtt9zCpEmTgOyfY9t7+8EHHzBq1ChatmzJnDlziImJYf369QwcOJCsrCz72BcuXGDz5s28++67jBs3jqCgoDzXtlgsDBo0iDVr1jB06FA++OAD6tevT0xMjL0m5OWXX2b58uUMGTKEL774gnHjxnHs2DFGjx5d5ILtxo0bU716daZOncrrr7/Oli1bSEtLA7JneIYOHUp4eDhVqlRh3rx5AAwbNsz+/0Vx+fJlHn/8cVJTU5kxYwbPP/88M2fO5PLly4U+x2Aw8OSTT7JhwwZefPFF5s2bR7Vq1Xj66aftyca5c+d47rnnaNasGR9++CFvvfUWp06dYsiQITf93gohhCg+WTpVRgUFBfHGG28wbNgwhyyhSk9P57333qNBgwYA7Ny5k6VLl/LVV1/RsWNHAM6cOcM777xDSkoKgYGBQPbNzfz58+3LJFq0aMHtt9/ON998wyuvvMKCBQtISkpiyZIl1KxZE4DbbruNe++9l/fff585c+bYY7jnnntuuHb9+PHjfP/994wePdpelNy5c2eqVKnCyy+/zJYtW+jWrRuQXaz6xhtv3HD99ldffYXRaOTLL78kLCwMyL6JeuSRR9i3bx/nz5/n6NGjLF26lFatWgHZy0PMZjMffPABDz/8MMHBwTd8XwcOHEhMTIz9uffffz/z58+3x1lUISEhfP755/j6+tq/jomJYcuWLfTo0eOGz7XNRPzwww80adIEgFtvvZV+/frx999/4+Pjg4+PD6+88gpt2rQBoH379pw9e5Zly5YBUKdOHSpVqpRnuVTuGQjIrhfQ6/V8/fXX9rqB7t2707t3b6ZPn55nJqhbt2688sorAHTs2JFt27axadMmRo8ezfHjx0lMTOSJJ57g1ltvBaB+/fosW7aM9PR0AgICivy+PfDAA/b3v2PHjvz2229s2rSJhx9++IbPGz9+POPHjy/ydWx27txJTEwMt99+OwDt2rUjODgYvV6Pv78/DRs2BKBhw4Y0bNiQ5ORkPvzwQx588EF7EgIQERHBY489xvLly3nssceA7J/p3N+j623ZsoV9+/Yxf/58+/U7dOjAuXPn+Ouvv4iKiiI9PZ0JEyZw77332uNLS0tj2rRpxMXF2X8PbkSv1/PJJ5/w8ssvs3jxYhYvXoxareaWW27hnnvu4bHHHsPb2xu9Xm//eatTp06xlnl99dVXWCwWPvnkE/vStHr16uVZqnW9VatWcfjwYb799ltatGgBZP+tGThwIDNnzmT58uX8+++/ZGVlMXToUKpWrQpAtWrV2LBhAxkZGW6pdxFCiPJMEo0yLDo6mr59+/LZZ59x5513csstt5R4rKCgIHuSARAaGgpg/wcbsN9U5040ateunWctdlhYGC1btuTvv/8GYPv27TR
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA5YAAAHJCAYAAAD+TKZ1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd1yP6//A8VelJJKVbCWnQkNWKKs4yHZwrIzslewiexQRKbvsjIPsvR2H7GMTKZVVVkS7+/dHv+6vj4ZShHM9H48efO75vq/7/nw+9/tzXfd1KUmSJCEIgiAIgiAIgiAIX0k5rwMQBEEQBEEQBEEQfm4isRQEQRAEQRAEQRByRCSWgiAIgiAIgiAIQo6IxFIQBEEQBEEQBEHIEZFYCoIgCIIgCIIgCDkiEktBEARBEARBEAQhR0RiKQiCIAiCIAiCIOSISCwFQRAEQRAEQRCEHBGJpSCkQ5KkvA5ByAXiPAqZEdeHIAiCIOSeHzaxtLOzo2rVqty8eTPd+dbW1jg5OX2XWJycnLC2tv4u+/ovy8o5tbOzw87OTn5taGiIl5dXrsZx5coVBg4cKL8ODw/H0NAQf3//XN3P18qtY/6a7SQmJuLk5IS5uTk1atQgICAgx3F8K8ePH2fChAny6wsXLmBoaMiFCxe+WwxBQUHY29tjbm5O06ZN2blzZ7bWf/HiBfPmzaNFixaYmZlhZWXF4MGDuXz58jeK+Mf0LT7vHzx4QLdu3RSmfYvPk8+lfp586S83rtPv/d31rcrv8899QRAE4ceUL68DyExSUhLOzs74+/ujpqaW1+EIP6CtW7dSqlSpXN3mtm3bCAoKkl+XLFmSrVu3UqFChVzdz9f6FsecVX///Tc7d+5k6NCh1K9fn6pVq+ZJHFmxdu1ahdfVqlVj69atVK5c+bvsPz4+ngEDBqCjo8OSJUs4dOgQzs7O6OrqYm5u/sX1r1y5wrBhwyhatCi9evVCT0+Pt2/fsnXrVuzs7HB1daV9+/bf/kB+AN7e3hQqVChXt3no0CGuXbumMO17vLdSP09SRUZGMnz4cIYMGULjxo3l6d/rOv0ZTJ06Na9DEARBELLgh04sNTU1efDgAUuWLGHUqFF5HY7wA6pevfo334eamtp32U9W5WUsb9++BaBjx46UL18+z+L4GoUKFfquZRcYGMiTJ09wcXGhfv36VK9ena1bt3Lt2rUvJpZv377F0dERXV1d1qxZQ4ECBeR5zZs3Z+DAgUyZMgUrKytKlCjxrQ8lz32vHzDy4vMkPDwcgAoVKvxQnzM/EpFkC4Ig/Bx+2KawAFWqVKF9+/b4+Phw69atTJdNrwmOl5cXhoaG8msnJyf69evH1q1badq0KaampnTt2pXg4GBOnjxJmzZtMDMzo3Pnzty9ezfNPrZu3Urjxo0xNTWld+/e3LlzR2H+06dPGT16NHXq1MHMzCzNMqlNoNasWSM3bduxY0e6x5OUlISfnx9t2rTB1NSUxo0bM3/+fOLi4hSOp3fv3kydOpUaNWpga2tLUlJSutt79OgRw4cPp06dOtSuXZtBgwYp1Mq9f/8eV1dXmjZtiomJCa1bt2b79u2ZlHgKf39/DA0NuX79Oh06dMDU1JQ2bdpw6NAheZmMmiCm17wpISGBWbNmUbt2bWrVqsWECRN4/fp1hvv//LxHREQwYcIE6tWrh7m5OT179lSolXj9+jXTp0+nSZMmGBsbU6dOHYYNGybf3Dk5ObFz506ePHkiN39NrylsSEgIDg4OWFpaUr16dezs7Lhy5Yo8P3WdgwcP4uDggLm5OXXq1MHFxYWPHz/Ky926dYvevXtTs2ZNzM3N6dOnD//++2+mZf7pMaeW7fnz57G3t8fMzAxLS0vc3d0zvBYyYm1tzeLFi5k7dy7169fH1NSUfv36ERISIpdNanPEpk2byucuLi6OJUuW0KJFC0xMTPj9999ZuXIlycnJ8rbt7OwYO3YsDg4OVK9enb59+8pldOjQIYYOHUr16tWpX78+S5cuJTo6mokTJ1KzZk3q16+Pu7u7wvNw4eHhjB8/HisrK6pVq0a9evUYP348b968kfd38eJFLl68KF976V2HN2/epF+/flhYWFCjRg0GDx7MgwcP5Pk5Kd8yZcqgpqbGkSNHALh48SJAlmord+3aRUREBBMnTlRIKgGUlZUZO3YsPXr0IDo6Wp7+zz//0L17d2rWrImFhQVjxozh2bNn8nx/f39MTEy4fPkyf/zxByYmJjRv3pwTJ07w6NEjevfujZmZGc2aNWP//v05Xu/zz99Un16/WX2ffN4UNjo6mpkzZ9KgQQOqV6/OH3/8walTp+T5sbGxLFiwgN9//x1jY2Nq1KhB37595c91Ly8vvL2908ST3ueJs7MzjRo1wtTUlE6dOnH8+PE0x+Pn58ekSZOoU6cO5ubmjBw5kpcvX2Z0erMkLi6OefPm0ahRI4yNjWnTpg0HDhxQWEaSJNauXUvLli0xNTWlWbNm+Pr6pnl21N/fn+bNm2NiYkLbtm05ffq0wryqVaty/fp1/vzzT0xMTGjSpAm+vr4K2/ia74islF90dDRTpkyRP7NHjRrF2rVrFa6dz78rkpOTWblyJc2aNcPY2JjmzZuzYcMGhe2GhoYyePBgLCwsMDMz488//1Q4bkEQBCH3/dCJJcDEiRMpWrQozs7OxMfH53h7165dY+PGjTg5OeHq6kpQUBADBw7E1dWVQYMG4eHhwbNnzxg7dqzCes+fP8fb2xtHR0c8PDyIiorCzs6Op0+fAikJS9euXbl9+zaTJ09mwYIFJCcn06NHD4UEDlJuagYMGMC8efOwtLRMN84pU6bIX+LLli2jR48ebNy4kaFDhyrcNFy+fJlnz56xZMkSxowZg4qKSpptvXjxgj///JOQkBCmTZuGu7s7L1++pHfv3rx9+5bY2Fi6d+/O3r176d+/P0uXLqVmzZpMmjSJ5cuXZ6lcBw0ahI2NDd7e3ujp6eHo6PhVX+IHDx7k9u3buLm5MWHCBE6dOsWAAQOylCR9+PCBbt26ceHCBcaNG4e3tzf58+fH3t6ekJAQJEli0KBB/PPPP4wdOxZfX1+GDx/O+fPn5aZWQ4cOpVGjRmhra8s/JHzu4cOHdOzYkfDwcFxcXJg/fz5KSkr07t1bTh5STZ06lbJly7J06VL69evH9u3bWbZsGZByQ9W/f3+KFi2Kl5cXCxcuJCYmhn79+vH+/ftsldvYsWOpWbMmy5cvp3Xr1vj4+LBt27ZsbQNg/fr1PHr0CFdXV2bNmsWtW7fk5xSHDh3KkCFDgJSmiVOnTkWSJAYPHoyPjw+dO3dm+fLltGjRgkWLFqVpvnbw4EEKFizIsmXL6N+/vzzdxcUFAwMDli1bRr169fD09KRTp06oq6vj7e3N77//jo+Pj/xjRUxMDL169SIoKIipU6fi6+tLr1692L9/PwsXLpTLvWrVqlStWpWtW7dSrVq1NMcaEBAgP2M3Z84cZs2axbNnz+jatWua9+zXlG+xYsUYMWIEO3fuZMyYMYwePVp+PvVL/v77b0qUKIGpqWm6842MjJgwYQK6urpASiJqb29P6dKl8fDwwNnZmWvXrvHnn3/y6tUreb3ExETGjBlD165dWbZsGQUKFGDs2LEMHjyYxo0bs3z5ckqWLMmECRN4/vx5jtfLqszeJ59LSkrC3t6evXv3MmjQIJYuXUqlSpUYNmyY/Ozp+PHj2bFjBwMHDmT16tU4Ozvz4MEDxowZgyRJdO7cmU6dOgEpPxh27tw5zX5evnxJp06duHz5MqNGjcLLy4uyZcsybNgw9uzZo7DswoULSU5OxsPDg/Hjx3Py5EnmzJmT7XJIJUkSw4YNY8uWLfTt25dly5bJSdeuXbvk5ebNm8e8efOwtrZm+fLldOrUifnz57Ny5Up5mWfPnrFy5UpGjhyJl5cXSkpKODg4KFwXycnJODo6Ymtry8qVK6lRowbz5s3j77//Bviq74islt/QoUM5ePAgI0aMYOHChXz48IEFCxZkWj7Tpk1j8eLFtG3bVv7MmTNnDkuWLJGPZ9CgQcTExDBv3jyWLl1
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA44AAAHJCAYAAADKNWdpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAD8kklEQVR4nOzddVhU6dvA8S8xSIggBiCiYmESKhiY2Ni59rp2ry12dyJ2r+2q2N2unevaKKGCHaggPfP+wcv8HAlB0UG9P9fFdTEn73PO1D3P/TxHR6VSqRBCCCGEEEIIIZKgq+0AhBBCCCGEEEKkb5I4CiGEEEIIIYRIliSOQgghhBBCCCGSJYmjEEIIIYQQQohkSeIohBBCCCGEECJZkjgKIYQQQgghhEiWJI5CCCGEEEIIIZIliaMQQgghhBBCiGRJ4iiEAEClUmk7hB/ej3oOf9S4U+NLjjEtzsuvcG6FEEL8GiRxTEfatm1LkSJFuH79eqLz3d3d8fT0/C6xeHp64u7u/l329StLyTVt27Ytbdu2VT+2t7fH29s7TeO4fPkyXbp0UT8OCgrC3t4eHx+fNN3Pl0qLYz5//jz29vbY29tz6tSpRJfx8/NTLxMUFJTibUdFRTFp0iR27dqlnvajvIaOHDnCkCFD1I/jz9P58+e/+b79/Pzo0KEDzs7OVKtWjW3btqV43Tdv3jB58mSqVatGsWLFcHV15ffff+fQoUMayz19+pQuXboQHBycqtju3btHy5YtNaal9nm4efNmpk6dqn7s4+OT6ueWEEIIkV5I4pjOxMbGMnToUKKiorQdikinNm3aRLNmzdJ0m5s3b8bPz0/9OHv27GzatInKlSun6X6+VFoes66uLvv370903t69e79om8+fP+evv/4iJibma0LTilWrVvHkyRP146JFi7Jp0yaKFi36TfcbFRVF586dCQ8PZ/78+ZQrV46hQ4dy9erVz64bERFB69atOX78OF26dGH58uVMmjSJrFmz0qtXL/766y/1smfOnOHEiROpjm///v0JYknt83DhwoWEhISoH1euXJlNmzaRPXv2VMcjhBBCaJskjumMqakp9+7dY/78+doORaRTTk5OWFlZfdN9GBgY4OTkhIWFxTfdT0ql5TGXKFGCQ4cOJZrk7d27l8KFC6fJfn5UGTNmxMnJiYwZM37T/fj6+hIcHEznzp0pV64cnp6eqFSqFCWO+/fvx8/Pj8WLF9O8eXNKly5NtWrVmDlzJtWqVWPu3LnExsamecxf+zy0sLDAyckJAwODNIxKCCGE+D4kcUxnChcuTMOGDVm2bBk3btxIdtnEyqa8vb2xt7dXP/b09KRjx45s2rSJatWq4eDgQIsWLQgICODYsWPUq1cPR0dHmjVrxu3btxPsI77VycHBgd9//51bt25pzH/8+DH9+/fH1dUVR0fHBMvElzyuXLmSWrVq4ejoyNatWxM9ntjYWNatW0e9evVwcHCgcuXKzJgxg8jISI3j+f333xk9ejQlSpTAw8MjyS+I/v7+9OrVC1dXV1xcXOjatatGq9r79+/VpW7Fixenbt26bNmyJZkzHie+3OzatWs0atQIBwcH6tWrp9GKlVS536dlpwDR0dFMmDABFxcXSpUqxZAhQ3j9+nWS+//0uj9//pwhQ4ZQtmxZnJ2dadOmjcaX79evXzN27FiqVKmiLunr2bOnulzO09OTbdu2ERwcrC5PTaxUNTAwkD59+uDm5oaTkxNt27bl8uXL6vnx6+zbt48+ffrg7OyMq6srI0aM4MOHD+rlbty4we+//07JkiVxdnamffv2/Pvvv8me84+POf7cnj17lg4dOuDo6IibmxvTp09PUbLg4eFBSEgI586d05h+584dAgMDqV27doJ1Dh8+TKtWrXB2dqZYsWLUqlWLdevWqY+7atWqAAwdOjRBeaqPjw81a9akePHi1K9fP0HrV0pfQ/v376dHjx44OTlRrlw5FixYQGhoKMOGDaNkyZKUK1eO6dOna/SpCwoKYvDgwZQvX56iRYtStmxZBg8ezJs3b4C45+OFCxe4cOGC+vma2HP333//pUOHDpQoUYIyZcrQv39/nj17pp7/119/UatWLYoXL06FChUYM2YMoaGhyV6HHDlyYGBgwMGDBwG4cOECAM7OzsmuB/Dy5UsAlEplgnldu3alR48eREVF4ePjw9ChQwGoWrWquiw8IiKCmTNnUqNGDYoVK0aJEiX4448/1O+B3t7ezJs3D9B87n362kvuuN3d3QkODmbbtm3q8tTESlVPnDhBixYtcHJyonz58owaNYp3796pj2/27Nm4u7tTrFgx3N3dmTlzJtHR0Z89R0IIIURak8QxHRo2bBiZM2dOs5LVq1evsnbtWjw9PZk8eTJ+fn506dKFyZMn07VrV2bNmsWTJ08YOHCgxnpPnz5l3rx59O3bl1mzZvH27Vvatm3L48ePgbiEpEWLFty8eZORI0cyc+ZMlEolrVu31kjQIO6LWOfOnZk2bRpubm6Jxjlq1Ch1Irdw4UJat27N2rVr6dGjh8aX4UuXLvHkyRPmz5/PgAED0NPTS7CtZ8+e8dtvvxEYGMiYMWOYPn06L1++5PfffyckJISIiAhatWrFrl276NSpEwsWLKBkyZIMHz6cRYsWpei8du3alapVqzJv3jzs7Ozo27fvF5XE7du3j5s3bzJlyhSGDBnC8ePH6dy5c4qSoLCwMFq2bMn58+cZNGgQ8+bNI0OGDHTo0IHAwEBUKhVdu3bl9OnTDBw4kOXLl9OrVy/Onj3L6NGjAejRoweVKlUiW7ZsSZan3r9/n8aNGxMUFMSIESOYMWMGOjo6/P777+ov/PFGjx6NjY0NCxYsoGPHjmzZsoWFCxcCEBoaSqdOncicOTPe3t7Mnj2b8PBwOnbsyPv371N13gYOHEjJkiVZtGgRdevWZdmyZWzevPmz6+XPn58CBQokKFfds2cPrq6uZMuWTWP68ePH6dmzJ0WLFmXBggV4e3tja2vLuHHjuHbtGtmzZ1cnGd27d1f/D/DkyROWLFnCn3/+ibe3Nzo6OvTp04dXr14BqXsNjRgxgoIFC7Jw4ULKli2Ll5cXTZs2xdDQkHnz5lGjRg2WLVumPq7w8HDatWuHn58fo0ePZvny5bRr1449e/Ywe/ZsIO5aFSlShCJFiiRZnnrr1i3atGlDZGQk06ZNY+zYsdy4cYOOHTsSExPD7t27mT59Oq1bt2b58uX07NmTHTt2MH78+GSvg4WFBb1792bbtm0MGDCA/v374+npmaLEsUKFCujr6/P7778zb948/v33X3Uy5eDgQMeOHTEyMqJy5cp0794dgHnz5tGjRw8ABg8ezNatW+nSpQsrVqxg6NCh3Lt3jwEDBqBSqWjWrBlNmzYFki5P/dxxz5s3j2zZslGpUqUky1OPHTtG165dyZIlC3PmzGHgwIEcPnyYfv36AbB06VI2bNhAz549WbFiBS1btmT58uXq15MQQgjxPelrOwCRkJmZGePGjaN79+7Mnz9f/SXiS4WFhTFnzhzy5csHxP2yv3HjRlatWkXZsmUBePDgAVOnTuXdu3dkypQJiGsBnD9/Pg4ODgA4OjpSrVo11qxZw5AhQ/jrr78ICQlhw4YN2NjYAFCxYkU8PDzw8vJi7ty56hhq165NkyZNkozx/v37bNmyhQEDBqgHaXFzcyN79uwMHjyYkydPUqlSJQBiYmIYN25csiVjq1atIioqipUrV6oTgUKFCtGyZUuuXbtGcHAwvr6+bNy4Uf1FtUKFCsTExLBgwQJatGiBubl5sue1bdu29OzZU71uo0aNmD9/vjrOlMqcOTPLly/H2NhY/bhnz56cPHmSKlWqJLtufEvhtm3b1CWWJUqUoGHDhly8eBEjIyOMjIwYMmQIpUqVAqB06dI8fPiQTZs2AZArVy4sLCzU5amARgshxH0JNjAwYPXq1eoSxsqVK1O3bl2mTZum0VJbqVIl9WArZcuW5fTp0xw/fpwBAwZw//593rx5Q7t27ShRogQAefPmZdOmTYSFhWFqapri89asWTP1+S9btiyHDx/m+PH
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAuYAAAHJCAYAAADJi/wtAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABxJUlEQVR4nO3deXhMd//G8fckmSyChCBRa+xrEjtFEctTrWqVPtVWdKHVlvp1sS+tpVRRVbGUUmppqdLSUorqQu2KUrXGHmJLQmSZJOf3R5p5jCQEk0yW+3Vdrsucc+bM55xMknu++ZzvMRmGYSAiIiIiIg7l5OgCREREREREwVxEREREJEdQMBcRERERyQEUzEVEREREcgAFcxERERGRHEDBXEREREQkB1AwFxERERHJARTMRURERERyAAVzEckRdK8z+9L5FBHJfRTMxSokJIQaNWrw119/pbs+ODiYQYMGZUstgwYNIjg4OFteKz/LzNc0JCSEkJAQ6+OqVasSGhpq1zp27drFK6+8Yn185swZqlatyvLly+36OvfKHse8bds2qlatStWqVdm0aVO62xw7dsy6zZkzZzK97+XLl9s858iRIzzzzDM222TmGG79Wtv7e/5evq+z4/0nIpJTuDi6AMlZkpKSGDx4MMuXL8fV1dXR5UgOtGTJEvz8/Oy6z6VLl3Ls2DHr4xIlSrBkyRLKli1r19e5V/Y8ZicnJ9asWUOzZs3SrFu9erVdXmPNmjX8+eefNsvu5RimTp1KwYIF7VITwOuvv0737t3vax9Z8f4TEckpNGIuNgoVKsSRI0eYNm2ao0uRHCooKCjLg5GrqytBQUEULVo0S18ns+x5zHXr1mXdunUkJiamWbd69WqqV69ul9e51b0cQ40aNez64ahs2bLUqFHjvvaRHe8/ERFHUTAXG9WrV+eJJ55g9uzZ7N+//7bbpvcn5dDQUKpWrWp9PGjQIHr06MGSJUto06YNAQEBdO3albCwMDZu3Mhjjz1GYGAgTz31FAcPHkzzGkuWLKFly5YEBATw/PPP8/fff9usP3fuHG+//TYNGzYkMDAwzTapLRFz587l4YcfJjAwkGXLlqV7PElJSSxatIjHHnuMgIAAWrZsycSJE4mPj7c5nueff5733nuPunXr8sgjj5CUlJTu/o4fP06fPn1o2LAhDRo0oFevXjajwteuXeODDz6gTZs21K5dmw4dOvDNN9/c5oynSG1b2Lt3L506dSIgIIDHHnuMNWvWWLdJbZvYtm2bzXNvbQsAsFgsvP/++zRo0ID69eszcOBArly5kuHr3/p1j4iIYODAgTRp0oQ6derQrVs3m9HaK1euMHLkSFq1akWtWrVo2LAhvXv3trZdDBo0iG+//ZazZ89a21fSa2U5ceIEffv2pWnTpgQFBRESEsKuXbus61Of8+OPP9K3b1/q1KlDw4YNGTZsGDdu3LBut3//fp5//nnq1atHnTp1eOGFF9izZ89tz/nNx5x6brds2cJLL71EYGAgTZs2ZcKECRm+F272yCOPEBkZydatW22W//PPP5w4cYL27dvbLE+v/eN2rT6hoaFMnTo1Td23ft3OnTtHnz59qFevHk2bNmXu3Llp9nVrK8sPP/xAx44dCQgIoHHjxvTr148LFy5Y1xuGwbx582jfvj0BAQG0bduWOXPmWPvdbz2W4OBgPv74Y8aOHUuDBg1o1KgRAwYMIDIyMsPzdy9fizu9ByHle6Nfv3707duXoKAgXnzxRTp37kzXrl3T1PDCCy/w4osvZlijiMi9UjCXNIYMGUKRIkUYPHgwCQkJ972/P//8k4ULFzJo0CA++OADjh07xiuvvMIHH3xAr169mDRpEuHh4fTr18/meefPn2fq1Km8+eabTJo0iaioKEJCQjh37hyQ8su2a9euHDhwgOHDh/PRRx+RnJzMc889ZxOAISWsvPzyy4wfP56mTZumW+e7775rDcozZszgueeeY+HChbz++us2F9Lt3LmT8PBwpk2bxjvvvIOzs3OafV24cIGnn36aEydOMGLECCZMmMClS5d4/vnniYyMJC4ujmeffZbvv/+enj17Mn36dOrVq8fQoUP59NNPM3Vee/XqRevWrZk6dSr+/v68+eab/Prrr5l67s1+/PFHDhw4wLhx4xg4cCC//PILL7/8cqZCZkxMDM888wzbtm2jf//+TJ06FTc3N1566SVOnDiBYRj06tWLzZs3069fP+bMmUOfPn3YsmUL7733HpDS3tCiRQuKFy9u/SB2q6NHj/Lkk09y5swZhg0bxsSJEzGZTDz//PNs377dZtv33nuPUqVKMX36dHr06ME333zDjBkzALh+/To9e/akSJEihIaG8vHHHxMbG0uPHj24du3aXZ23fv36Ua9ePT799FM6dOjA7NmzWbp06R2fV6lSJSpXrmzzQQpg1apVNGzYkOLFi99VHbd66qmn6NKlC5Dywfapp55Ks82NGzfo1q0bhw8fZvTo0QwfPpylS5emaX+52a5duxgwYADt2rXjs88+Y/DgwWzdupV33nnHus348eMZP348wcHBfPrpp3Tp0oWJEycya9asDPf75Zdfsnv3bj744APeeecdfv31V3r16nVXF6/e7muRmfdgqh9//BFPT09mzJhBz5496dKlC3/++ScnT560bhMeHs62bdt48sknM12fiEhmqcdc0vDy8mLUqFG89tprTJs2jbfeeuu+9hcTE8PkyZOpWLEiANu3b2fx4sXMmzePJk2aAHDy5Ek+/PBDoqOjKVy4MJAygj1t2jQCAgIACAwMpE2bNixYsICBAwfyxRdfEBkZyVdffUWpUqUAeOihh3jkkUf45JNPmDJlirWG9u3b07lz5wxrPHr0KN988w3vvPOO9SLEpk2bUqJECQYMGMBvv/1GixYtAEhMTGTUqFG3/XP6vHnzSEhIYO7cudagVa1aNZ555hn27t3L2bNnOXz4MIsXL6ZOnToANG/enMTERKZPn07Xrl3x9va+7XkNCQmhd+/e1ud26tSJadOmWevMrCJFijBnzhwKFChgfdy7d29+++03WrVqddvnpo50f/vtt9YWjLp16/LEE0+wY8cOPDw88PDwYODAgdSvXx+ARo0acerUKZYsWQKktDcULVrU2r4C2IxwQ0qvs6urK/Pnz7f2PLds2ZIOHTowfvx4m780tGjRgoEDBwLQpEkTNm/ezC+//MI777zD0aNHuXr1Kt27d6du3boAVKhQgSVLlhATE0OhQoUyfd6eeuop6/lv0qQJ69ev55dffkl3hPVW7du3Z/78+YwYMQIXl5Qfw6tXr+bVV1/N9OtnxM/Pz/reTD2ft/r22285d+4cP/zwA5UqVQJSvr/atm2b4X537dqFu7s7r7zyivX6E29vb/766y8Mw+DatWvMnz+fbt260b9/fwAefPBBLl68yI4dO+jVq1e6+3VycmLu3LnWc1+0aFF69+7N77//zkMPPZSpY77d1yIiIuKO78FUZrOZkSNHWo8vICCAcePGsWLFCvr27QvAihUr8PT0vO25EhG5Vxoxl3QFBwfTsWNHZs+ezYEDB+5rX15eXtZQDlCsWDEgJQikSg2h0dHR1mVlypSxhnKA4sWLExQUxI4dOwDYsmUL1atXx9fXl8TERBITE3FycuKhhx7ijz/+sKnhTn27qaOujz76qM3yRx99FGdnZ5uWEG9v7zv2uO7atYugoCCb0U8/Pz82btxIixYt2L59O6VKlbKG8lQdO3YkPj6evXv3kpycbD2u1H8369Spk/X/JpOJtm3bsm/fPuLi4m5b261atGhhDeWQ8rV3cXGxnuc7HWfp0qVtzq+Hhwdr167lqaeewtfXl/nz51OvXj3OnDnD5s2bWbBgAbt3776rv8Zs376dVq1a2VyI6OLiwqOPPsr+/fuJiYmxLr81jPr5+VmDfuXKlSlatCivvvoq7777LuvWraNYsWL079//rvuWb/3a3fw6d3JrO8vevXu5cOEC7dq1u6sa7tXOnTspW7asNZQDlCxZMsMgD9CgQQNiY2Pp0KEDH330ETt37qRZs2b06dMHk8nEnj1
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAtYAAAHJCAYAAACheH4VAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACSaUlEQVR4nOzdd3hTZfsH8G+SpukelC4oo7RQdmmBslcZ/l6GCuLLEAQBQVkKyEZEZW9ZKiAbhFdFAUGRJQiyylZGB21ZpYvukaTJ+f1REihtoSO73891cV305OSc+zxJ2jv3ec59RIIgCCAiIiIionIRGzsAIiIiIiJLwMSaiIiIiEgHmFgTEREREekAE2siIiIiIh1gYk1EREREpANMrImIiIiIdICJNRERERGRDjCxJiIiIiLSASbWRKTF+0URERGVHRNrEzN48GDUr18fN27cKPLx0NBQTJs2zSCxTJs2DaGhoQbZV0VWktd08ODBGDx4sPbngIAArF69WqdxXLp0CSNHjtT+/ODBAwQEBGDv3r063U9Z6eKYz58/j4CAgAL/6tati+DgYPTv3x/Hjx8vtO758+dLHNfevXsREBCABw8elCtOfdH3ZzoqKgrDhg1DUFAQunTpgp9//rlEMb34mrz4T/Pef/FzoE+m9v4nIvNgZewAqDCVSoXp06dj7969sLa2NnY4ZIL27NkDLy8vnW7zhx9+QFRUlPZnDw8P7NmzB9WrV9fpfspKl8c8e/ZsNGjQAEB+lT4tLQ2bNm3C6NGj8e2336JDhw5GicucKRQKvP/++/D09MTatWvx+++/Y/r06ahZsyaCgoKKfd7o0aPRv39/7c/r1q3DzZs3sWbNGu0yBwcHvcZORKQrTKxNkKOjIyIiIrB27VpMmDDB2OGQCWrSpIne92FtbW2Q/ZSULmPx9/cvtL1mzZqhY8eO2LZtW6kSa1MaI2MKDw/Hw4cPMWvWLLRu3RpNmjTBnj17cOXKlZcm1tWrVy/w5a1SpUom994jIiopTgUxQfXq1cObb76JjRs34p9//nnpukWdHl+9ejUCAgK0P0+bNg3Dhw/Hnj170KVLFzRu3Bj9+/dHdHQ0Tpw4gV69eiEwMBBvv/02bt26VWgfe/bsQceOHdG4cWMMGTIEN2/eLPD4o0ePMHHiRISEhCAwMLDQOppTqps3b8b//d//ITAwED/99FORx6NSqbBz50706tULjRs3RseOHbF06VLI5fICxzNkyBB89tlnCA4ORvfu3aFSqYrc3t27dzF27FiEhISgefPmGDVqVIGqbEZGBhYsWIAuXbqgUaNG6NmzJ3788ceXjHg+zSn/a9euoXfv3mjcuDF69eqF33//XbtOcVMJijqdrVQqMXfuXDRv3hzNmjXD1KlT8eTJk2L3/+LrnpCQgKlTp6JVq1YICgrCoEGDcOXKFe3jT548weeff45OnTqhYcOGCAkJwZgxY7RTFqZNm4aff/4ZDx8+1J7+LupUeExMDMaPH482bdqgSZMmGDx4MC5duqR9XPOc3377DePHj0dQUBBCQkIwa9YsZGdna9f7559/MGTIEDRt2hRBQUEYOnQorl69+tIxf/6YNWN79uxZDBs2DIGBgWjTpg2WLFlS7HvhVRwcHODr64tHjx4VWH737l0MHz5cu4+lS5ciLy+vyLiKcubMGQwcOBBNmzZFixYtMGnSJMTFxWkfV6vVWLFiBUJDQ9GwYUOEhoZi2bJlUCqV2nVK8j4NDQ3FihUrMH/+fDRv3hwtWrTAlClTkJqaWiimvXv34rXXXkOjRo3w+uuv4+TJkwCA1NRUNGrUCMuXLy+wfk5ODpo2bYqvv/662OOsUqUKrK2t8ccffwAALly4AAAvTarLQhAEbNiwQfs7qV+/frh+/XqBdcLDwzFq1CgEBwcjODgYY8aMwf379wusk5CQgOnTp6NDhw5o3Lgx+vbti2PHjr103696/2u2O2HCBO3vnNmzZ2tfXwBYtGgRGjdujIyMjALPW7duHZo2bYqcnJyyDg0RmQAm1iZqxowZcHV1xfTp06FQKMq9vStXrmDHjh2YNm0aFixYgKioKIwcORILFizAqFGjsHz5csTFxeGTTz4p8LzHjx9jzZo1+Pjjj7F8+XKkpaVh8ODB2uTjyZMn6N+/P/799198+umnWLZsGdRqNd55550CCSyQn/C///77WLx4Mdq0aVNknLNnz9YmEF9//TXeeecd7NixA6NHjy5wYV1YWBji4uKwdu1aTJo0CRKJpNC24uPj0a9fP8TExGDOnDlYsmQJkpKSMGTIEKSmpiI3NxcDBw7EgQMHMGLECO0ftpkzZ+Kbb74p0biOGjUKnTt3xpo1a+Dr64uPP/5Ym6SUxm+//YZ///0XCxcuxNSpU/Hnn3/i/fffL1GSmJWVhQEDBuD8+fOYPHky1qxZA5lMhmHDhiEmJgaCIGDUqFE4c+YMPvnkE3z33XcYO3Yszp49i88++wxA/un4Dh06wN3dXftF6kWRkZHo06cPHjx4gFmzZmHp0qUQiUQYMmSINonS+Oyzz1C1alWsW7cOw4cPx48//qhNyjIzMzFixAi4urpi9erVWLFiBXJycjB8+PBCycarfPLJJ2jatCm++eYb9OzZExs3bsQPP/xQqm1oKBQKPHjwoNDUlwULFmj38Z///AcbNmzA7t27S7TNX375BcOGDYO3tzeWL1+O6dOn48qVK+jXrx+Sk5MBABs2bMD333+PMWPGYNOmTRgwYAC+++477XiV5n26a9cuXL58GQsWLMCkSZNw8uRJjBo1qsBnJy4uDuvXr8dHH32E1atXQyQSYfz48UhOToaLiwu6dOmCAwcOFHjOkSNHkJ2djTfffLPYY61UqRLGjRuHn3/+GZMmTcLEiRMxbdo0nSfWly5dwpEjR/Dpp59iyZIlSEhIwIcffqj9shMdHY3+/fsjOTkZixYtwrx583D//n0MGDBAO+ZJSUno27cvwsLCMGHCBKxevRpVq1bFmDFjsH///iL3W5L3v0KhwJAhQ3D58mXMmDEDCxYswO3bt7Fp0ybtdvr27Qu5XF7gSzgA7Nu3D927d4etra1Ox4uIDItTQUyUs7MzvvjiC3z44Yc6mRKSlZWFlStXws/PD0B+NWn37t3YsmULWrVqBQCIjY3FokWLkJ6eDicnJwD5FeS1a9eicePGAIDAwEB06dIF27dvx9SpU7F161akpqbi+++/R9WqVQEA7du3R/fu3fHVV19h1apV2hj+85//4K233io2xsjISPz444+YNGmS9iK6Nm3awMPDA1OmTMGpU6e0p+jz8vLwxRdfvHRu65YtW6BQKLB582a4u7sDAOrWrYsBAwbg2rVrePjwIcLDw7F7927tH/927dohLy8P69atQ//+/eHi4vLScR08eDDGjBmjfW7v3r2xdu3aUk0lAABXV1d89913sLOz0/48ZswYnDp1Cp06dXrpczWV5p9//hn16tUDAAQHB+PNN9/ExYsXYWtrC1tbW0ydOhXNmjUDALRo0QL37t3Dnj17AOSfjn/xFPzzFWYAWLNmDaytrbFt2zbtnNeOHTuiZ8+eWLx4cYEKaocOHTB16lQAQKtWrXDmzBn8+eefmDRpEiIjI5GSkoJ3330XwcHBAIBatWphz549yMrKgqOjY4nH7e2339aOf6tWrXD06FH8+eefBebsFkWtVmsTsby8PDx8+BDr1q3DkydP8M477xRY991338Xo0aMBAC1btsTRo0dx7tw5DBo06JX7WLp0Kdq2bYtly5Zpl2vOsnz33XeYMmUKLly4gIYNG2o/GyEhIbC1tdWOw969e0v8PhWLxdi8ebP2uZUqVcKYMWPw119/oX379tq41q5dq/1dIJPJtGcMOnfujLfeeguHDh3C+fPn0bJlSwD5XxBat24Nb2/vYo9XoVBApVJBJBLh119/xdixY/Hee++9dIzKwtraGuvXr9cec3p6OmbNmoXIyEjUrVsXa9asga2tLbZs2aJ9n7Zq1QpdunTBxo0bMXXqVGzevBlPnjzB4cOHtb+3OnTogKFDh2Lx4sXo2bNnof2W5P2/f/9+3L1
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAy0AAAHJCAYAAACIWta7AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzddVhU6dvA8e8wMKSCIKBiYaEugtiKCSa2rv7sVddaa21x7RZ1bV27VzFAxLV1jdfuXmVV7MIGJKbeP1hmnQUVFcS4P9c1l3Liee5zGODc85RCr9frEUIIIYQQQojPlEl6ByCEEEIIIYQQbyNJixBCCCGEEOKzJkmLEEIIIYQQ4rMmSYsQQgghhBDisyZJixBCCCGEEOKzJkmLEEIIIYQQ4rMmSYsQQgghhBDisyZJixBCCCGEEOKzJkmLEOKDyLq04lOQ95kQQgiQpOWL1rp1awoXLsz58+eT3e/j44O/v/8nicXf3x8fH59PUte3LCXf09atW9O6dWvD125ubsycOTNV4zh58iSdOnUyfH3nzh3c3NwIDg5O1Xo+VGpc89GjR3FzczN6FSxYkGLFitGsWTP+/PPPJMcePXr0Y0N/q+DgYNzc3Lhz506a1gNw5swZmjVrhpeXF3Xq1GHfvn3vdf7atWtxc3OjS5cuH1R/fHw848aNY9OmTR90vhBCiK+LJC1fOK1Wy6BBg4iPj0/vUMRnas2aNTRp0iRVy1y3bh3Xrl0zfO3k5MSaNWuoXLlyqtbzoVLzmocNG8aaNWtYs2YNq1evZsqUKahUKrp27freD/Ifq3LlyqxZswYnJ6c0refx48d07NiRzJkzM2fOHHLnzk2PHj3eK1kKCgqiQIEC7N+/n/v37793DI8ePWLZsmVoNJr3PlcIIcTXR5KWL1yGDBn4+++/mT17dnqHIj5TRYsWJUuWLGlah0qlomjRotjb26dpPSmVmtecL18+ihYtStGiRfHy8qJy5crMmTMHGxsbli9fnip1pJS9vT1FixZFpVKlaT0nT57k5cuX9OjRg7Jly/Lzzz8TFxfHxYsXU3T+tWvXOHPmDAMGDMDKyoo1a9akabxCCCG+fpK0fOEKFSpEgwYNWLhwIRcuXHjrscl1mZk5cyZubm6Gr/39/fnxxx9Zs2YNVatWxcPDg2bNmhEeHs6ePXuoW7cunp6eNGnShL/++itJHYmftnt4ePDDDz9w6dIlo/337t2jT58+lCpVCk9PzyTHJHYzWrJkCTVr1sTT05OgoKBkr0er1fL7779Tt25dPDw8qFy5MpMnTyYuLs7oen744QeGDx9OsWLF8PPzQ6vVJlve9evX6d69O6VKlaJkyZJ07tzZqDUhMjKS8ePHU7VqVYoUKUKdOnVYv379W+54gsQuPWfPnqVhw4Z4eHhQt25dtm3bZjjmTd2L/tvVC0CtVjNmzBhKlixJiRIlGDhwIE+fPn1j/f/9vj969IiBAwdStmxZvLy8aNWqFadPnzbsf/r0KSNHjqRKlSq4u7tTqlQpunXrZviU3d/fnw0bNnD37l1Dl7DkuofduHGDnj174u3tTdGiRWndujUnT5407E88Z+vWrfTs2RMvLy9KlSrFkCFDePXqleG4Cxcu8MMPP1C8eHG8vLxo27YtZ86cees9f/2aE+/t4cOHad++PZ6ennh7ezNp0qQ3vhfexcbGBldXV+7du2e0/fr16/z444+GOiZPnmxoKejZsycVK1ZEp9MZnTN48GBq1KgBJNz7vn374u3tTZEiRahfvz4hISGGY5PrHrZv3z6aNWtG0aJFKV++PMOGDePly5cA6HQ6pk6dio+PD+7u7vj4+PDrr7+iVqvfen25c+cGYMeOHQAcO3YMMzMz3N3dU3R/goKCsLW1pUyZMtSoUYP169cnaTGJjY1lxIgRVKxYEXd3d2rWrMmiRYuAhPeGr68vAIMGDTJ0PX3Tz3NcXByzZ8+mZs2aFClShOrVqzN//nyje926dWsGDx7M/PnzqVy5MkWKFKFZs2acO3fOKK7z58/z448/Urp0aYoVK0aXLl34+++/Dftffz+1bt3a8Ltn3bp1PHr0iO7du+Pl5UWlSpVYunQpABqNhvLly9O3b98k96p69eoMGTIkRfdVCCG+ZZK0fAV++eUXMmXKlGrdxE6fPs3KlSvx9/dn/PjxXLt2jU6dOjF+/Hg6d+7MlClTuH//Pv369TM678GDB8yaNYtevXoxZcoUXrx4QevWrQ0Pdk+fPqVZs2ZcvHiRoUOH8uuvv6LT6WjZsqVRcgAJyVTHjh2ZOHEi3t7eycY5bNgwQxLx22+/0bJlS1auXEnXrl2NBu+eOHGC+/fvM3v2bPr27YtSqUxS1sOHD/nf//7HjRs3GDFiBJMmTeLx48f88MMPPH/+nNjYWFq0aMGmTZvo0KEDc+bMoXjx4gwePJi5c+em6L527twZX19fZs2ahaurK7169fqg7kVbt27l4sWLTJgwgYEDB7J37146duyYogfw6OhomjdvztGjR+nfvz+zZs3C3Nyc9u3bc+PGDfR6PZ07d+bgwYP069ePRYsW0b17dw4fPszw4cMB6Nq1K5UqVcLR0fGNXcKuXr1Ko0aNuHPnDkOGDGHy5MkoFAp++OEHjh07ZnTs8OHDcXFxYc6cOfz444+sX7+e3377DYCoqCg6dOhApkyZmDlzJlOnTiUmJoYff/yRyMjI97pv/fr1o3jx4sydO5c6deqwcOFC1q1b915lJIqPj+fOnTvkzJnTaPv48eMNddSqVYsFCxYQGBgIwPfff8/Dhw+NEtPY2Fi2bdtGw4YNAejfvz/Xrl1j5MiRLFiwgMKFCzNw4ECOHDmSbBx79uyhc+fOODg4MG3aNPr168euXbvo3bs3AAsWLGD16tV069aNxYsX07x5cxYtWmS4v2/i5uZGs2bNmDNnDv3792fy5MlMnDgRFxeXd94bjUZDaGgoderUwczMjIYNGxIREWE0Bghg3Lhx7N+/n4EDB7Jo0SJ8fX2ZOHEiQUFBODk5MWvWLAB++uknw/8h6c+ziYkJXbp0YeHChTRp0oS5c+dSs2ZNpk2bZnjPJtq+fTu7d+9myJAhTJkyhcePH9OjRw/Dz86RI0do3ry5Ib4xY8Zw//59mjVrluR3VJ8+ffDx8WHevHm4uroyfPhw2rRpQ/78+ZkzZw4eHh6MHz+ec+fOYWpqSoMGDdi1axdRUVGGMk6ePMnNmzdp1KjRO++rEEJ860zTOwDx8WxtbRk1ahQ//fQTs2fPNjywfKjo6GimTZtG3rx5gYRPWQMDA1m6dClly5YF4ObNmwQEBPDy5UsyZswIJLR8zJ49Gw8PDwA8PT2pWrUqK1asYODAgSxbtoznz5+zevVqw8NPxYoV8fPzY/r06cyYMcMQQ61atWjcuPEbY7x69Srr16+nb9++hgHh3t7eODk5MWDAAPbv30+lSpWAhIeoUaNGvbW70NKlS4mPj2fJkiU4OjoCULBgQZo3b87Zs2e5e/cuYWFhBAYG4uXlBUCFChXQaDTMmTOHZs2aYWdn99b72rp1a7p162Y4t2HDhsyePdsQZ0plypSJRYsWYWVlZfi6W7du7N+/nypVqrz13MQWkg0bNlCoUCEAihUrRoMGDTh+/DiWlpZYWloycOBASpQoAUDp0qW5deuWoYtPzpw5sbe3N3QJA4xaRgBmzZqFSqVi+fLl2NjYAAnjMerUqcPEiRONWqgqVarEwIEDAShbtiwHDx5k79699O3bl6tXr/Ls2TPatGlDsWLFAMiTJw9r1qwhOjqaDBkypPi+NWnSxHD/y5Yty65du9i7dy/NmjV763k6nc7QSqDRaLh79y5z5szh6dOntGzZ0ujYNm3a0LVrVwDKlCnDrl27OHLkCK1ataJ8+fJkyZKFkJAQw8/Rzp07efXqFQ0aNAASfta6detG1apVAShVqhR2dnZv7A42c+ZMChUqxKxZs1AoFEBCV73p06fz+PFjjh07hru7u+FnqVSpUlhaWr7zvkVFRWFmZoZOpyM0NJTx48fj5+f31nMS7d+/n4iICMODeIkSJcidOzeBgYFUr17dcNy
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA7AAAAHJCAYAAAC8D9XiAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd1yP+//48UdTGpK9lVFGSlbISOVkZdSxZe/oyCxJdhQi2TKzSRnHKo5jO46tk0g0rIjM9vv3R7+ur7e2E/E5r/vt1u3mfV2v63U9r+t9vd+u5/s1LgWZTCZDEARBEARBEARBEH5wikUdgCAIgiAIgiAIgiDkh0hgBUEQBEEQBEEQhJ+CSGAFQRAEQRAEQRCEn4JIYAVBEARBEARBEISfgkhgBUEQBEEQBEEQhJ+CSGAFQRAEQRAEQRCEn4JIYAVBEARBEARBEISfgkhgBUEQBEEQBEEQhJ+CSGAF4TuQyWRFHYIg/JTEZ0cQBEEQhM/9ZxJYe3t76tWrx+3bt7Ndb2FhgbOz83eJxdnZGQsLi++yr/+y/Lyn9vb22NvbS68NDAxYsWJFocbx999/M3LkSOl1TEwMBgYGBAQEFOp+vlZhHPPly5cxMDCQ+6tTpw6NGjWiT58+nDp1qpCizZ+AgAAMDAyIiYn513V9i2vi3woICMDa2hoTExMGDRrEw4cPC7T9xYsXGTduHK1bt8bY2Bhra2sWLVrEq1evvlHEecu8hi5fvgzAs2fPGDlyJLGxsVKZ7/k9HR4ejpOTE2ZmZhgaGtKqVSsmTJhAWFhYgepZsWIFBgYG3yhKQRAEQfjvUS7qAL6ntLQ0XFxcCAgIQFVVtajDEX5Au3fvpkKFCoVa5969e4mIiJBelytXjt27d1OtWrVC3c/XKsxjnjlzJvXr1wcyWs4SEhLYuHEjY8eOZe3atbRt27ZQ9vNf9ueff+Li4oKDgwPGxsYsXLgQBwcHjh49mq/tFy9ezIYNG+jQoQOurq6ULFmSe/fusX79ek6cOIG/vz8VK1b8xkeRVf369dm9eze1atUC4MKFC5w5c0aujK+vL5qamt88lvv379O7d28aNmzIjBkzKF26NM+ePcPf359evXqxdetWGjZsmK+6evbsSevWrb9twIIgCILwH/KfSmC1tLS4f/8+K1euxMnJqajDEX5A+b0p/TdUVVW/y37yqzBjqVWrVpb6mjRpgrm5OVu3bhUJbCE4c+YMJUuWxNHREcho0Z8zZw6vX79GR0cn122PHDnC+vXrcXFxYfDgwdLy5s2b07ZtW3r06MH8+fPx9fX9loeQLU1NzTyvxXr16n2XWDZt2oSOjg7r169HWfn//pu0srKiQ4cOrFq1inXr1uWrrgoVKhT6j2KCIAiC8F/2n+lCDFC3bl26d+/Ohg0buHPnTq5ls+s2+GVXMGdnZ4YNG8bu3buxsrLCyMiIPn36EBkZyenTp7GxscHY2JiePXvyzz//ZNnH7t27MTc3x8jIiEGDBhEaGiq3/smTJ0ycOJFmzZphbGycpUxmV9RNmzbRoUMHjI2N2b9/f7bHk5aWxvbt27GxscHIyAhzc3MWL15MUlKS3PEMGjQId3d3GjVqRKdOnUhLS8u2vocPHzJu3DiaNWtG06ZNGTVqlFwr47t37/Dw8MDKyooGDRrQpUsX9u3bl8sZz5DZ9fPmzZv06NEDIyMjbGxsOHbsmFTmy66Gmb7sDgyQkpLCvHnzaNq0KU2aNGHatGnEx8fnuP8v3/cXL14wbdo0WrRogYmJCQMGDOD69evS+vj4eGbPnk27du0wNDSkWbNmODg4SF1XnZ2dOXDgALGxsVK34ey6ED969AhHR0fMzMxo2LAh9vb2/P3339L6zG2OHj2Ko6MjJiYmNGvWjBkzZvDx40ep3J07dxg0aBCNGzfGxMSEwYMHc+PGjVzP+efHnHluL168yNChQzE2NsbMzAwvL68cr4W8aGpqoqenx5MnT6RlW7ZsoUOHDjRo0IDWrVsza9Ys3r9/D4CjoyNt2rQhPT1drh5XV1esra2l12fOnKFPnz40bNiQVq1aMXPmTN6+fSu3zc2bN+nTpw8NGjTA3NycDRs2yK3/muv0xYsXuLi40LZtW4yMjPj1118JCQmRK/P+/XtmzpwpXTdOTk5s3rxZ+v7Yvn07BgYGREZGym0XFBRE3bp1efr0aY7719PT482bN1y6dAmAK1euUKNGjTyTV4B169ZRq1YtBg0alGWdrq4uU6ZMwcTERBp3mpSUxMqVK6X36pdffmHdunVZ3hs/Pz8sLS2l78BTp07JfUZXrFhB+/bt+eOPP7CxscHQ0BBra2sCAwOlOj7/XAcEBODi4gKApaWl1G348y7E1tbWUhL/uW7dujFmzBjpdXBwMLa2tjRo0AAzMzPmzZsn95nJzsuXL5HJZFmOU11dnenTp9OxY0e55YGBgfTo0QNjY2PMzc1ZsmQJycnJ0rF/2YU4r5jyc74g7++n9PR01q1bR/v27aU6tm3bJldHVFQUo0ePxtTUFGNjY3r37p2l5VsQBEEQfiT/qQQWYPr06ejo6ODi4iLdYPwb169fx9/fH2dnZzw8PIiIiGDkyJF4eHgwatQoli5dytOnT5k8ebLcds+ePcPX15cJEyawdOlSEhISsLe3l27y4+Pj6dOnD3fv3sXNzY0lS5aQnp5O//795RJFyLjZGTFiBJ6enpiZmWUb58yZM6Ub9dWrV9O/f3/8/f0ZO3as3CQpV69e5enTp6xcuZJJkyahpKSUpa7nz5/Tu3dvHj16xKxZs/Dy8uLly5cMGjSIN2/ekJiYSL9+/Th06BDDhw9n1apVNG7cGFdXV9asWZOv8zpq1CgsLS3x9fVFT0+PCRMmfNVN1dGjR7l79y4LFy5k2rRp/PHHH4wYMSJfydiHDx/o27cvly9fZsqUKfj6+lKsWDGGDh3Ko0ePkMlkjBo1ivPnzzN58mT8/PwYN24cFy9exN3dHYCxY8fStm1bypYtK/1g8aUHDx5ga2tLTEwMM2bMYPHixSgoKDBo0CCuXLkiV9bd3Z3KlSuzatUqhg0bxr59+1i9ejWQkTQNHz4cHR0dVqxYgbe3N58+fWLYsGG8e/euQOdt8uTJNG7cmDVr1tClSxc2bNjA3r17C1RHpuTkZGJiYqQu04cPH8bLy4v+/fvj5+eHg4MDQUFBzJ07F4Bff/2V58+fy/1AkZiYyLFjx+jRowcAp0+fZtSoUZQuXZply5YxefJkgoODs/SsmDVrFp07d2bdunWYmJjg5eXF6dOnpToLep2+fPmSX3/9latXr+Lk5MSKFSuoXLkyDg4OHDx4UCo3duxYjh49yvjx4/H29ubDhw8sWbJEWm9jY0OxYsUICgqSqz8wMJAWLVrk2oW3V69e1K1bl4kTJzJ69Ghu3ryJj49Pnu9DXFwcYWFhmJubo6CgkG2Zfv36MWzYMBQUFJDJZIwePZoNGzbQs2dP1qxZQ4cOHVi2bJl0fUNGt97FixfTsWNHVq1ahbGxMRMmTMh2/3PmzGHgwIGsW7eOKlWqMG3atCzfZwDm5uZSEurr68vYsWOzlOnatStnzpyRfvgAiIiIICwsjG7dugFw6NAhHBwcqFGjBitXrmTcuHEcPHgwy/dedvt/8uQJffr0Yfv27UREREjlO3ToIF2HkPFjxLRp06hfvz6+vr6MHDmSbdu2MW/evGzrzm9MeZ2vvL6fIOP69/HxoWvXrtL7t2DBAlauXAlkJLijRo3i06dPeHp6smrVKkqWLMmYMWN4/PhxjudHEARBEIqU7D9iwIABsgEDBshkMpksJCREpq+vL1u6dKm0vl27drJp06ZJr/X19WU+Pj5ydfj4+Mj09fWl19OmTZPp6+vLHjx4IC2bOXOmTF9fX3bhwgVpmZ+fn0xfX1+WkJAgt93NmzelMi9evJAZGRnJFi5cKJPJZLKlS5fKGjRoIIuJiZHKJCUlySwtLWXjx4+XyWQyWXR0tExfX182ffr0XI/9/v37Mn19fdnatWvllgcGBsr09fVlf/zxh1xcT58+zbW+hQsXyoyMjGQvXryQlj19+lRmbm4
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA4sAAAHJCAYAAAAsHKwtAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3xN9xvA8c+5N0u2EMRMjMQmdmyhtXd/qkhrFbVKh1GbmlFBSG1qFSW22qvU3rUixN4jImTee35/3ObWlcggJOF5v155kTO+5znn3tx7n/t9zverqKqqIoQQQgghhBBCvEST1gEIIYQQQgghhEh/JFkUQgghhBBCCBGPJItCCCGEEEIIIeKRZFEIIYQQQgghRDySLAohhBBCCCGEiEeSRSGEEEIIIYQQ8UiyKIQQQgghhBAiHkkWhRBCCCGEEELEI8miEGlIVdW0DkFkQPK8MSXXQwghhHg3Pvpk0cfHh6JFi3LmzJkE13t7ezNgwID3EsuAAQPw9vZ+L8f6mCXnMfXx8cHHx8f4u4eHB/7+/qkax7Fjx+jSpYvx95s3b+Lh4UFgYGCqHudNpcY5Hzp0CA8PD5OfwoULU6ZMGVq3bs3OnTvfSVwvP8apcV3jzuPQoUMJrvf398fDw+ON23+dV2MPCwujX79+HD161LjNq8/VlJo9ezbe3t6ULVuWHj16cP/+/WTtl9jf0bt8Lr96vn/88Qfjx483/h4YGIiHhwc3b95McdsvXrzA39+fBg0aULJkScqWLUvr1q35448/3ltCmt5eB4QQQnzczNI6gPRAp9MxcOBAAgMDsbCwSOtwRDq0fPlycuTIkapt/vHHH1y+fNn4e7Zs2Vi+fDl58+ZN1eO8qdQ856FDh1KsWDHA0Av09OlT5s2bR/fu3Zk5cyY1atRIleMkJL1d17dx/vx51q5dS8uWLVOlvWXLljFp0iQGDRpEjhw5GD58OAMHDmTu3Lmp0v778Ouvv1KhQoW3bkdVVbp168aVK1fo0qULhQoVIioqin379jFkyBAuXbrETz/9lAoRJ+5Der4KIYTI+CRZBOzs7Lh06RLTp0+nb9++aR2OSIdKly79zo9hYWHxXo6TXKkZS8GCBeO1V65cOWrWrMnChQvfabKY3q5rerJ7926KFClCu3btAENv97Jly9I4qrRx7NgxDh06xLx586hSpYpxec2aNdFoNCxevJivv/4aZ2fndxqHPF+FEEKkJx99GSpAkSJFaNasGXPmzOGff/5JdNuESuBeLUEbMGAAnTp1Yvny5dSpU4eSJUvSunVrQkJC2LVrF40bN6ZUqVL873//4/z58/GOsXz5cmrWrEnJkiX56quvOHfunMn627dv891331GhQgVKlSoVb5u4Mqb58+dTr149SpUqxapVqxI8H51Ox5IlS2jcuDElS5akZs2aTJw4kaioKJPz+eqrrxg2bBhlypShQYMG6HS6BNu7cuUKPXv2pEKFCpQvX56uXbua9J49e/aMsWPHUqdOHUqUKEGjRo1YuXJlIlfcIK607NSpUzRv3pySJUvSuHFjNm/ebNzmdaWCCZXpxcTE8PPPP1O+fHnKlStH//79efz48WuP/+rjfv/+ffr374+Xlxeenp60a9eOEydOGNc/fvyYESNGUKtWLYoXL06FChXo0aOHsTRuwIABrF69mlu3bhlLzhIqP7t69Sq9e/emSpUqlC5dGh8fH44dO2ZcH7fPn3/+Se/evfH09KRChQoMHjyYFy9eGLf7559/+Oqrryhbtiyenp60b9+ekydPJnrNXz7nuGt74MABOnbsSKlSpahSpQq+vr6vfS4kxdbWFjc3N27fvg28vnwwoXLH8PBwfvjhBzw9PfHy8uLnn38mIiIiweMkdF2Tep6mhqCgILp27UqZMmUoU6YMPXr04MaNGybbXLhwgZ49e1KpUiWKFStGtWrV+Pnnn4mMjIzX3qFDh/jyyy8B+PLLL02e06qqMnv2bOPrxueff87p06eTjNHNzY1Lly5x+fJlYmNjOXHiBGXKlHnLM09YVFQUEyZMoEaNGhQvXpzGjRuzadMmk20iIyP55Zdf+PTTTylevDhlypShQ4cOCb5OguG5cevWLVavXh3vuXPq1Clat25NiRIlqFmzJnPmzEk0vgcPHgCg1+vjrWvTpg19+/ZFURTjsjd5Hf7111/x8PBg165dJu2fP38eDw8Ptm3b9kbP1+Rc2zd5DRBCCCEkWfzXTz/9RObMmRk4cCDR0dFv3d6JEydYvHgxAwYMYOzYsVy+fJkuXbowduxYunbtyqRJk7hz5w4//PCDyX53795l2rRp9OnTh0mTJvH06VN8fHyMH6gfP35M69atOXv2LEOGDOGXX35Br9fTtm3beB92/f39+frrr5kwYYLJN+UvGzp0qDF5+/XXX2nbti2LFy+me/fuJvfoHD16lDt37jB9+nS+//57tFptvLbu3bvH559/ztWrVxk+fDi+vr48fPiQr776itDQUCIjI2nTpg3r16+nc+fOBAQEULZsWQYNGsSMGTOSdV27du1K7dq1mTZtGm5ubvTp04c9e/Yka9+X/fnnn5w9e5Zx48bRv39/du/ezddff52sxOf58+d88cUXHDp0iB9//JFp06ZhaWlJx44duXr1Kqqq0rVrV/bv388PP/zA3Llz6dmzJwcOHGDYsGEAdO/enRo1auDs7Gz8cuBVwcHBtGjRgps3bzJ48GAmTpyIoih89dVXHD582GTbYcOGkStXLgICAujUqRMrV67k119/BQyJVefOncmcOTP+/v74+fkRERFBp06dePbsWYqu2w8//EDZsmWZMWMGjRo1Ys6cOfzxxx8paiNOdHQ0N2/efKNyu0WLFvH8+XMmT55M165d+eOPP+L9Lb1OUs/TxOj1emJjY+P9vJpghISE0Lp1ax49esT48eMZPXo0N27c4IsvvuDRo0eA4QuHtm3bEhERwbhx45g9ezYNGzZk0aJFLFy4MN6xixUrxtChQwHD323ccwkMvWLbtm1jyJAh+Pr6cv/+fb755htiY2MTPZ8uXbrg5OREjx49+PLLL3n+/DljxoxJzmUEDElqcq6Hqqr06NGDZcuW0aFDB3799Vc8PT3p27cva9asMW7Xr18/Vq1aRZcuXZg3bx4DBw7k0qVLfP/99wneMzht2jScnZ2pUaMGy5cvJ1u2bMZ1w4cPp2HDhsyaNQtPT098fX3jJWkvq1ChAtbW1nz33Xf4+vpy6NAhY9Lu6urK119/TdasWYE3fx1u3rw5efPmZePGjSbbbNiwAUdHxwR72JN6vibn2qbma4AQQoiPi5Sh/svBwYGRI0fyzTffpEo5atwH2QIFCgBw+PBhli1bxoIFC/Dy8gLg2rVrjB8/nrCwMOzt7QFDT9/06dMpWbIkAKVKlaJOnTosWrSI/v3789tvvxEaGsrvv/9Orly5AKhevToNGjRgypQpTJ061RhD/fr1E723KTg4mJUrV/L9998bB1qpUqUK2bJlo1+/fuzdu9f44SU2NpaRI0cmeg/bggULiI6OZv78+cZSrcKFC/PFF19w6tQpbt26RVBQEMuWLcPT0xOAatWqERsbS0BAAK1bt8bR0THR6+rj40OPHj2M+zZv3pzp06enuIwxc+bMzJ07F2tra+PvPXr0YO/evdSqVSvRfeN6BFevXk2RIkUAKFOmDM2aNePIkSNkypSJTJky0b9/f8qVKwdAxYoVuX79OsuXLwcgb968ODk5mZScvdwTCIYPwhYWFixcuBBbW1vAUBLXqFEjJkyYYNIjW6NGDfr37w+Al5cX+/fvZ/fu3Xz//fcEBwfz5MkTvvzyS2OvUf78+Vm+fDnPnz/Hzs4u2dftf//7n/H6e3l5sX37dnbv3k3r1q0T3S8uyQLDc+nWrVsEBATw+PFj2rZtm+zjxylQoADTp09Ho9FQo0YNFEVhzJgxBAUF4e7unui+ST1PE3sutW/fPlnxTZs2jUyZMrFgwQLjY+fl5UWdOnWYM2cO/fv3JygoiCJFijBlyhTjNpUrV2b//v0cOnTIZPAjMPTEFixYEDCU9cb9Hwyli7NmzTL
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABJoAAAHJCAYAAADNS1N4AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeVxN+f/A8ddtF8lOtrJmK6UoO8WMLfuaZZJ9hrGTfSfCoIx9axIG2ce+DmMZy4w1EVlD9qLlVvf3R7/O11XaRIz38/G4D+7ZPu9zbvfce97383kflUaj0SCEEEIIIYQQQgghxEfSyeoAhBBCCCGEEEIIIcR/gySahBBCCCGEEEIIIUSmkESTEEIIIYQQQgghhMgUkmgSQgghhBBCCCGEEJlCEk1CCCGEEEIIIYQQIlNIokkIIYQQQgghhBBCZApJNAkhhBBCCCGEEEKITCGJJiGEEEIIIYQQQgiRKSTRJIT45DQaTVaHIIQQQgghhBDiM5BE0zeia9euVKhQgUuXLiU738nJCQ8Pj88Si4eHB05OTp+lrW9ZWl7Trl270rVrV+W5paUl3t7emRrHuXPn6N27t/L8/v37WFpaEhAQkKntZFRm7XNsbCyrV6+mVatW2NjYYGtrS6tWrVi5ciUxMTGZEKm291+7tEjL38Tbt2/x9vamSZMmWFtbY2dnR8eOHdm4cWO6EoZf2usshBBCCCGE+Dz0sjoA8fnExcUxatQoAgICMDAwyOpwxBdow4YNFCpUKFO3uXHjRoKDg5XnBQoUYMOGDRQvXjxT28mozNrncePGsW/fPnr37k2lSpWIj4/n7NmzzJs3j3PnzrFw4cJMiPZ/JkyYkKnbg4SeZ3379uXWrVv07t2bMmXKEB0dzfHjxxk3bhw3btxg9OjRadrWl/Y6CyGEEEIIIT4PSTR9Q0xMTLhx4wYLFy5k8ODBWR2O+ALZ2Nh88jYMDAw+SztplRmxPHz4kC1btjB58mTat2+vTK9duzZ58uRh+vTpXLx4EWtr649uK1Hp0qUzbVuJzp07x+nTp1m5ciU1a9ZUpterVw8dHR38/Pzo1asX+fPnT3VbX9rrLIQQQgghhPg8ZOjcN6R8+fK0bNmS5cuXc/ny5RSXTW44kbe3N5aWlspzDw8PevTowYYNG2jQoAHW1tZ07NiR27dvc/jwYVxcXKhcuTLt2rXj2rVrSdrYsGED9erVw9ramh9++IGrV69qzX/48CFDhgyhWrVqVK5cOckyiUNzVq1aRaNGjahcuTKbN29Odn/i4uJYu3YtLi4uWFtbU69ePWbPnk10dLTW/vzwww9MmDCBKlWq0KRJE+Li4pLd3q1bt+jfvz/VqlWjatWq9OnTR6vXTnh4ODNmzKBBgwZYWVnRrFkzNm3alMIRTxAQEIClpSX//vsvrVq1wtraGhcXF/bs2aMsc/r0aSwtLTl9+rTWuskNpVKr1UydOpWqVatib2/PyJEjef78+Qfbf/91f/LkCSNHjqR69erY2trSpUsXLly4oMx//vw5kyZNon79+lSqVIlq1arx008/cf/+feWYbtmyhQcPHijDqJIbUhUSEsLPP/9MzZo1sbGxoWvXrpw7d06Zn7jO7t27+fnnn7G1taVatWqMHTuWt2/fKstdvnyZH374ATs7O2xtbXFzc+Off/5J8Zi/u8+Jx/bkyZO4u7tTuXJlatasiZeX1wf/FgCePn2KRqMhPj4+yTwXFxeGDBlCzpw5tY7rqFGjqFu3LtbW1rRt25aDBw9qrRcTE8O8efNwdnbG2tqaZs2asWXLFmX++693aq9FWoSFhQEkux+urq4MHjwYlUqlTEvpfZDc65zW93Rqr7NGo2H16tU0btwYa2trGjZsyIoVK7SG9p09e5YuXbpQuXJlqlWrluRvPz4+nl9++QUnJycqVaqEk5MTc+bMQa1Wp/l4CSGEEEIIIZKSRNM3ZvTo0eTOnZtRo0ZlSt2YCxcu4Ofnh4eHBzNmzCA4OJjevXszY8YM+vTpw9y5cwkNDWXYsGFa6z169AgfHx8GDRrE3LlzefXqFV27duXhw4dAwkVzx44duXLlCuPGjWPOnDnEx8fTuXNnrYQOJCTAevXqxaxZs7R6Ybxr/PjxSuJn0aJFdO7cGT8/P3788cckF6ehoaEsXLiQoUOHoqurm2Rbjx8/pkOHDoSEhDBx4kS8vLx4+vQpP/zwAy9fviQqKgpXV1d27NhBz549+fXXX7Gzs2PMmDEsXrw4Tce1T58+ODs74+PjQ4kSJRg0aBBHjx5N07rv2r17N1euXMHT05ORI0dy5MgRevXqlWLSJNGbN2/o1KkTp0+fZvjw4fj4+GBoaIi7uzshISFoNBr69OnDiRMnGDZsGCtWrKB///6cPHlSGdb1448/UrduXfLnz68kFt938+ZNWrduzf379xk7diyzZ89GpVLxww8/cObMGa1lJ0yYQJEiRfj111/p0aMHmzZtYtGiRQBERETQs2dPcufOjbe3N7/88guRkZH06NGD8PDwdB23YcOGYWdnx+LFi2nWrBnLly9n48aNH1y+XLlymJmZMWPGDCZNmsSxY8eIiIgAIE+ePPTp0wcLCwsgISnVtm1bzp49y+DBg/H29qZIkSL89NNPbN++XSuGVatW0a5dO5YsWUKtWrXw8PBg586dSdpPy2uRFtWqVcPY2JghQ4bg5eXF6dOniYqKAsDCwoJevXqRL18+IPX3wfvS855O6XUGmDVrFrNmzcLJyYnFixfTtm1bZs+ezdKlSwH4+++/cXNzw8jIiHnz5jF69GjOnDlDt27dlP1ZtmwZ69at46effmLlypV06tSJFStWaLUjhBBCCCGESD8ZOveNMTU1ZfLkyfTr1y9ThtC9efOGefPmUapUKQDOnDnD+vXrWb16NdWrVwfgzp07zJw5k9evXyu9OuLi4li4cKEylKhy5co0aNCA3377jZEjR7JmzRpevnzJunXrKFKkCAB16tShSZMmzJ8/nwULFigxNG7cmDZt2nwwxps3b7Jp0yaGDh2qFKWuWbMmBQoUYMSIERw7doy6desCCQWdJ0+enGLNntWrVxMTE8OqVauUIUTlypWjU6dO/Pvvvzx48ICgoCDWr1+Pra0tkDCEKjY2ll9//ZWOHTuSK1euFI9r165d+emnn5R1W7VqxcKFC5U40yp37tysWLECY2Nj5flPP/3EsWPHqF+/forrJvZE2rJlC+XLlwegSpUqtGzZkr///pts2bKRLVs2Ro4cib29PQAODg7cvXuXDRs2AFC8eHHy5MmjNYzq3Z4pAD4+PhgYGODr60uOHDmAhKFazZo1Y9asWVo9werWrcvIkSMBqF69OidOnODIkSMMHTqUmzdv8uLFC7p160aVKlUAKFmyJBs2bODNmzeYmJik+bi1a9dOOf7Vq1fnwIEDHDlyhI4dOya7vIGBAUuXLmXEiBH4+/vj7++Pjo4OFStWpHHjxnTu3BkjIyMAVq1axfPnz9m7d6/yt123bl3c3NyYNWsWzZo14+bNm+zdu5fRo0fzww8/KHE8ePCA06dP06xZM632nzx5kuprkRZ58+Zl2bJleHh4sHz5cpYvX46+vj42NjY0b96cNm3aKMnX1N4HieeEROl5T6f0Or9+/RpfX1+6dOnC8OHDAahRowZhYWH8/fff9OnThzlz5lCiRAmWLFmixFu5cmWaNm3K5s2b6dy5M2fOnKFSpUrKuaNatWpky5YtXX8nQgghhBBCiKSkR9M3yMnJiebNm7N8+XKuXLnyUdsyNTXVuqBM7O1QuXJlZVpiUuX169fKtGLFimnVq8mfPz82Njb8/fffAJw8eZLy5ctTsGBBYmNjiY2NRUdHhzp16vDXX39pxZCYBPmQxF4xTZs21ZretGlTdHV1tYag5cqVK9XC0OfOncPGxkarTk2hQoU4fPgwdevW5cyZMxQpUkRJMiVq3rw50dHR/Pvvv8THxyv7lfh4V6tWrZT/q1QqGjZsyMWLF5XeGGlVt25dJckECa+9np6ecpxT28+iRYtqHd9s2bKxd+9e2rVrR8GCBfH19cXOzo779+9z4sQJfvv
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"for cat in sorted(data[group[-2]].unique()):\n",
" sub_data = data[data[group[-2]]==cat]\n",
" sub_data = sub_data.complete({group[0]:range(int(data[group[0]].min()), int(data[group[0]].max()) + 1)}\n",
" ,group[-1],fill_value=0)\n",
" g=sns.lineplot(sub_data.sort_values(ascending=True, by=group[-1]),y=record_col,x=group[0],\n",
" hue=group[-1], marker=\"o\", errorbar=None)\n",
" g.set(xticks=list(range(2012,2022+1,2)))\n",
" g.legend(title=None,bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0., ncols=math.ceil(len(g.legend_.texts)/12))\n",
" g.set_title(f'Number or co-publications in {cat}')\n",
" g.set_ylabel(None)\n",
" plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 358,
"id": "27c90aaf",
"metadata": {},
"outputs": [],
"source": [
"from matplotlib.ticker import FuncFormatter\n",
"import math\n",
"def orderOfMagnitude(number):\n",
" return math.floor(math.log(number, 10))\n",
"\n",
"def roundToNearest(number):\n",
" order = orderOfMagnitude(number)\n",
" # if order!=0:\n",
" # order+=1\n",
" near = math.ceil(number/10**order)*10**order\n",
" return near"
]
},
{
"cell_type": "markdown",
"id": "91d2cc8a",
"metadata": {},
"source": [
"## Collabs"
]
},
{
"cell_type": "code",
"execution_count": 359,
"id": "15c37337",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>UT (Unique WOS ID)</th>\n",
" <th>Institution</th>\n",
" <th>Country</th>\n",
" <th>Institution_harm</th>\n",
" <th>merge_iter</th>\n",
" <th>Country_Type</th>\n",
" <th>Eurovoc_Class</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>156249</th>\n",
" <td>WOS:000470746100063</td>\n",
" <td>Aalto Univ</td>\n",
" <td>Finland</td>\n",
" <td>Aalto Univ</td>\n",
" <td>0</td>\n",
" <td>EU</td>\n",
" <td>Northern Europe</td>\n",
" </tr>\n",
" <tr>\n",
" <th>87313</th>\n",
" <td>WOS:000864187905025</td>\n",
" <td>Leiden Univ</td>\n",
" <td>Netherlands</td>\n",
" <td>Leiden Univ</td>\n",
" <td>0</td>\n",
" <td>EU</td>\n",
" <td>Western Europe</td>\n",
" </tr>\n",
" <tr>\n",
" <th>77706</th>\n",
" <td>WOS:000856951300001</td>\n",
" <td>Shanghai Jiao Tong Univ</td>\n",
" <td>China</td>\n",
" <td>Shanghai Jiao Tong Univ</td>\n",
" <td>0</td>\n",
" <td>China</td>\n",
" <td>China</td>\n",
" </tr>\n",
" <tr>\n",
" <th>37529</th>\n",
" <td>WOS:000515391700085</td>\n",
" <td>Zhejiang Univ</td>\n",
" <td>China</td>\n",
" <td>Zhejiang Univ</td>\n",
" <td>0</td>\n",
" <td>China</td>\n",
" <td>China</td>\n",
" </tr>\n",
" <tr>\n",
" <th>11762</th>\n",
" <td>WOS:000366662500015</td>\n",
" <td>Hong Kong Polytech Univ</td>\n",
" <td>China</td>\n",
" <td>Hong Kong Polytech Univ</td>\n",
" <td>0</td>\n",
" <td>China</td>\n",
" <td>China</td>\n",
" </tr>\n",
" <tr>\n",
" <th>...</th>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>23983</th>\n",
" <td>WOS:000440332500083</td>\n",
" <td>East China Normal Univ</td>\n",
" <td>China</td>\n",
" <td>East China Normal Univ</td>\n",
" <td>0</td>\n",
" <td>China</td>\n",
" <td>China</td>\n",
" </tr>\n",
" <tr>\n",
" <th>55242</th>\n",
" <td>WOS:000655718000002</td>\n",
" <td>Univ Chinese Acad Sci</td>\n",
" <td>China</td>\n",
" <td>Univ Chinese Acad Sci</td>\n",
" <td>0</td>\n",
" <td>China</td>\n",
" <td>China</td>\n",
" </tr>\n",
" <tr>\n",
" <th>73974</th>\n",
" <td>WOS:000816996900001</td>\n",
" <td>Tianjin Univ</td>\n",
" <td>China</td>\n",
" <td>Tianjin Univ</td>\n",
" <td>0</td>\n",
" <td>China</td>\n",
" <td>China</td>\n",
" </tr>\n",
" <tr>\n",
" <th>108917</th>\n",
" <td>WOS:000641964800046</td>\n",
" <td>Univ Manchester</td>\n",
" <td>United Kingdom</td>\n",
" <td>Univ Manchester</td>\n",
" <td>0</td>\n",
" <td>Non-EU associate</td>\n",
" <td>Western Europe</td>\n",
" </tr>\n",
" <tr>\n",
" <th>24100</th>\n",
" <td>WOS:000441116900007</td>\n",
" <td>Univ Elect Sci &amp; Technol China</td>\n",
" <td>China</td>\n",
" <td>Univ Elect Sci &amp; Technol China</td>\n",
" <td>0</td>\n",
" <td>China</td>\n",
" <td>China</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"<p>100 rows × 7 columns</p>\n",
"</div>"
],
"text/plain": [
" UT (Unique WOS ID) Institution Country \n",
"156249 WOS:000470746100063 Aalto Univ Finland \\\n",
"87313 WOS:000864187905025 Leiden Univ Netherlands \n",
"77706 WOS:000856951300001 Shanghai Jiao Tong Univ China \n",
"37529 WOS:000515391700085 Zhejiang Univ China \n",
"11762 WOS:000366662500015 Hong Kong Polytech Univ China \n",
"... ... ... ... \n",
"23983 WOS:000440332500083 East China Normal Univ China \n",
"55242 WOS:000655718000002 Univ Chinese Acad Sci China \n",
"73974 WOS:000816996900001 Tianjin Univ China \n",
"108917 WOS:000641964800046 Univ Manchester United Kingdom \n",
"24100 WOS:000441116900007 Univ Elect Sci & Technol China China \n",
"\n",
" Institution_harm merge_iter Country_Type \n",
"156249 Aalto Univ 0 EU \\\n",
"87313 Leiden Univ 0 EU \n",
"77706 Shanghai Jiao Tong Univ 0 China \n",
"37529 Zhejiang Univ 0 China \n",
"11762 Hong Kong Polytech Univ 0 China \n",
"... ... ... ... \n",
"23983 East China Normal Univ 0 China \n",
"55242 Univ Chinese Acad Sci 0 China \n",
"73974 Tianjin Univ 0 China \n",
"108917 Univ Manchester 0 Non-EU associate \n",
"24100 Univ Elect Sci & Technol China 0 China \n",
"\n",
" Eurovoc_Class \n",
"156249 Northern Europe \n",
"87313 Western Europe \n",
"77706 China \n",
"37529 China \n",
"11762 China \n",
"... ... \n",
"23983 China \n",
"55242 China \n",
"73974 China \n",
"108917 Western Europe \n",
"24100 China \n",
"\n",
"[100 rows x 7 columns]"
]
},
"execution_count": 359,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"wos_univ_locations = wos_univ.merge(wos_country_types, on=\"Country\")\n",
"wos_univ_locations.sample(100)"
]
},
{
"cell_type": "code",
"execution_count": 360,
"id": "3638e798",
"metadata": {},
"outputs": [],
"source": [
"wos_collabs = wos_univ_locations[wos_univ_locations[\"Country_Type\"]!=\"Other\"][[record_col,\"Country\"]].drop_duplicates()"
]
},
{
"cell_type": "code",
"execution_count": 361,
"id": "b3adb06a",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA1wAAAP0CAYAAAC+qj1HAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3zO1///8UeECBIjEoRo7VhZYteIoFTFplZUY6/UKkmNmjWiRq1SaoWKkdTo8LFbWrFna4VqrDQUNSKJ5Pr94Zf319Wg2rpcxvN+u123z3Wdc97n/TpvST/vV855n8vGZDKZEBERERERkacug7UDEBEREREReVkp4RIREREREbEQJVwiIiIiIiIWooRLRERERETEQpRwiYiIiIiIWIgSLhEREREREQtRwiUiIiIiImIhSrhEREREREQsRAmXiIiIPHMmk8naIYiIPBNKuEREXmGBgYGULl2aI0eOPLTe39+fkJCQZxJLSEgI/v7+z+Rc/8S9e/cICQnBx8eHcuXKsWvXLmuH9K89yb9nYGAggYGBxmd3d3emT5/+VOPYt28fXbt2NT6fP38ed3d3IiMjn+p5RESeBxmtHYCIiFhXSkoKoaGhREZGYmdnZ+1wnjs//PADUVFR9OzZk6pVq1K6dGlrh/RMRUREkC9fvqfa58qVK4mJiTE+58mTh4iICF577bWneh4RkeeBZrhERF5xjo6OnDp1ipkzZ1o7lOfS9evXAWjWrBkVKlQgW7Zs1g3oGfP29n7qCddf2dnZ4e3tjZOTk0XPIyJiDUq4RERecaVKlaJJkybMmzePo0ePPrbtw5aXTZ8+HXd3d+NzSEgInTp1IiIigjp16uDp6Unr1q05e/YsW7duJSAgAC8vL1q2bMkvv/yS7hwRERH4+fnh6enJu+++y88//2xWf/HiRfr370/FihXx8vJK1yZtedqCBQuoX78+Xl5erF69+qHjSUlJYenSpQQEBODp6Ymfnx+TJk0iMTHRGEvaErw6deqYLbX7qzNnztC7d28qVqxIhQoV6Natm9kszs2bNxk3bhx16tTBw8ODhg0bsmrVqkf2lyYyMhJ3d3cOHTpE06ZN8fT0JCAggO+++85oEx0djbu7O9HR0WbH/nV5IEBycjJjxoyhQoUKlC9fnsGDB/PHH3888vx//Tf//fffGTx4MFWqVMHHx4f27dtz4MABo/6PP/5g5MiR1KpVi7Jly1KxYkV69erF+fPngfvXNCoqigsXLhjLCB+2pPDXX38lODiYN954A29vbwIDA9m3b59Rn3bMt99+S3BwMD4+PlSsWJGhQ4dy584do93Ro0d599138fX1xcfHh44dO3Lw4MG/ve4iIk+LEi4REeHDDz8kV65chIaGkpSU9J/7O3DgAOHh4YSEhDBu3DhiYmLo2rUr48aNo1u3bkyePJlLly4xcOBAs+MuX77MjBkz6Nu3L5MnT+bGjRsEBgZy8eJF4P7NfOvWrTl27BjDhg3jk08+ITU1lXbt2pklN3A/EezSpQsTJ07kjTfeeGicw4cPN5Kg2bNn065dO8LDw+nZsycmk4mePXvSo0cPAGbMmMFHH3300H7i4uJ45513+PXXXxkxYgRhYWFcuXKFd999l+vXr3P37l3atm3LunXr6Ny5M7NmzcLX15chQ4bw2WefPdE17datG7Vr12bGjBkULlyYvn37sn379ic69kHffvstx44dY/z48QwePJht27bRpUsXUlJS/vbY27dv06ZNG6Kjo/nggw+YMWMGmTNnJigoiF9//RWTyUS3bt3YuXMnAwcOZP78+fTu3ZuffvrJuHY9e/akZs2auLi4GMn1X50+fZpmzZpx/vx5hg4dyqRJk7CxseHdd99l9+7dZm0/+ugjChQowKxZs+jUqROrVq1i9uzZANy6dYvOnTuTK1cupk+fzpQpU0hISKBTp07cvHnzH187EZF/Q89wiYgIOXLkYNSoUfTo0YOZM2fSr1+//9Tf7du3mTp1KkWLFgVg9+7dLF++nIULF1KlShUAzp07x4QJE/jzzz/Jnj07cH/GaebMmXh6egLg5eVFnTp1WLJkCYMHD2bRokVcv36dL7/8kgIFCgBQo0YNGjRowLRp0/j000+NGN566y2aN2/+yBhPnz7NqlWrGDBggLGBwxtvvEGePHkYNGgQ33//PTVr1jSeKypVqhRubm4P7WvhwoUkJSWxYMECXFxcAChZsiRt2rTh0KFDXLhwgZMnT7J8+XJ8fHwAqF69Ovfu3WPWrFm0bt2anDlzPvaaBgYG0qtXL+PYpk2bMnPmTGrWrPnY4/4qV65czJ8/n6xZsxqfe/Xqxffff0+tWrUee2zazFRUVBSlSpUCoFy5cjRp0oQ9e/aQJUsWsmTJwuDBgylfvjwAlSpV4rfffiMiIgKA1157DScnJ2MZIWA2IwX3k1s7OzsWL16Mg4MDAH5+fjRs2JCJEyeazQzWrFmTwYMHA1ClShV27tzJtm3bGDBgAKdPn+batWt06NCBcuXKAVCkSBEiIiK4ffs2jo6O/+jaiYj8G5rhEhER4P4Odo0aNWLevHkcO3bsP/WVI0cOI9kCcHZ2Bu4nUGnSEow///zTKCtYsKCRbAG4uLjg7e3Nnj17APjpp58oVaoUefPm5d69e9y7d48MGTJQo0YNfvzxR7MY0hKCR0mbKXn77bfNyt9++21sbW3TLc97nH379uHt7W0kWwD58uVj69at1KxZk927d1OgQAEj2UrTqFEjEhMTOXToEKmpqcaY0l4Patq0qfHexsaGunXrcvjwYe7evfvEccL9BCUt2YL7/+4ZM2Y0rvHfjdPNzc3s2mbJkoUNGzbQsmVL8ubNy+LFi/H19eX8+fPs3LmTJUuWsH///n80c7p7925q1aplJFsAGTNm5O233+bo0aPcvn3bKE9L2tLky5fPSOCKFy+Ok5MT3bt3Z/jw4WzcuBFnZ2c++OADiz+XJiKSRjNcIiJiGDp0KD/99BOhoaGPfO7pSTx4o/ygB2/0HyYtMXtQ7ty5uXTpEnB/A4tz585RpkyZhx6fkJDwxOe6ceMGgFmSBPdv7HPlyvWPlpxdv379kbNfaef663ng/8b7559/MnPmTGbMmGFWf+LECeN9njx5zOpy586NyWQyS1ifxF/jyJAhA7ly5Xqifq5fv07u3Lkf22bt2rXGktGcOXNSqlQp7O3t/1GMN27ceOjPgrOzMyaTiVu3bhllWbJkMWuTIUMG4zu+smXLxtKlS5k9ezbffvstERER2Nvb07hxY4YOHapdOUXkmVDCJSIihhw5cjBixAh69erFrFmzHtrmr8/6/HU52H+RlgQ9KD4+3ti9ztHRkYoVKzJo0KCHHv9PbqBz5Mhh9J+2PBHubypx7do1cuXK9cR9OTo6PnTjiZ9++gk3Nzdy5MjBuXPn0tXHx8cD95f1VaxY8aHPM6W5fv26WRJy5coVbG1tyZkzJzY2NgCkpqaaHXP79u10uyqm7bqYJiUlhWvXrv1tIgX3x5m2+cWD9u/fT44cObh27RqDBw8mMDCQTp06kTdvXgAmTpxotuHF38mRIwdXrlxJV/7g9fr999+fqK8iRYoQFhZGSkoKhw8fZs2aNXz55Ze89tprdO7c+YljEhH5t7SkUEREzNSpU4eGDRsyd+7cdEmEg4MDcXFxZmX79+9/auc+e/Ysv/32m/H50qVLHDhwgEqVKgFQsWJFzp49S+HChfHw8DBea9asYdWqVdja2j7xuSpWrAjA119/bVb+9ddfk5KSgq+v7xP3Vb58eQ4dOmR2va5evUrnzp3Zvn07FSpU4MKFC2a7+cH92aBMmTLh6elJ3rx5zcbk4eFh1nbTpk3Ge5PJxP/+9z98fX2xs7MzZhQvX75stLlx40a6jUQAdu7cabZcccOGDdy7d8+4xn83ztjYWE6dOmWUJSYm0qdPH1atWsWBAwdITU2lT58+RrKVkpJiLPdMSwgzZHj87UeFChXYunWr2UxWSkoKX3/9NR4eHk+cWH/33XdUrlyZ+Ph4bG1t8fHxYcSIEWTPnt3YiEVExNI0wyUiIukMGzaMXbt2pZt
"text/plain": [
"<Figure size 900x1200 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"C:\\Users\\radvanyi\\AppData\\Local\\Temp\\ipykernel_30956\\1686009801.py:29: UserWarning:\n",
"\n",
"FixedFormatter should only be used together with FixedLocator\n",
"\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA1YAAAP0CAYAAACpiK2OAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd1hUR/v/8TeiiAoWUBFL7GIDwYING0g0Khp7xcfYe49CxN5LYsdoxBBbYgnGErtGEhsqKrEkKmJUjBorsQLC/v7wx37doGgCiOXzuq69nt2ZOXPuOUue69zOnFkzg8FgQERERERERP6zdGkdgIiIiIiIyNtOiZWIiIiIiEgyKbESERERERFJJiVWIiIiIiIiyaTESkREREREJJmUWImIiIiIiCSTEisREREREZFkUmIlIiIiIiKSTEqsRETknWQwGNI6BHkBfTci8i5SYiUi8p7z9vbGwcHB5FW2bFlq167N2LFjiYqKSusQ/zV/f38CAgKS3c+TJ0/w8fHBxcWF8uXLc/DgwRSILm24u7vj4+OTZBtvb2+8vb2Nnx0cHJg7d26KxhEaGkr37t2NnyMjI3FwcCAoKChFzyMi8rqlT+sAREQk7ZUuXZrRo0cbP8fGxnLq1Cm++OILfvvtN7799lvMzMzSMMJ/Z/bs2fTt2zfZ/fzyyy+sW7eO3r17U61aNUqXLp0C0b09Vq1aRZ48eVK0zzVr1nD+/Hnj59y5c7Nq1So++OCDFD2PiMjrpsRKRESwsrLC2dnZpKxSpUo8ePCAOXPmEBYWlqj+fXD37l0AmjVrRoECBdI2mDTwOr5zCwuL9/JvS0TePVoKKCIiL1S2bFkA/vzzT2PZzp07adasGY6OjlSvXp0JEybw8OFDY/3cuXPx9PRk3rx5uLq64ubmRlRUFAaDgcDAQD766COcnJzw9PQkICDA5HmbI0eO0KFDB8qVK4erqyvDhw/n9u3bxvqgoCBKly5NWFgYrVu3xtHRkTp16pgs+3NwcABg3rx5xvfPExcXx4oVK/Dy8sLJyYnatWszY8YMoqOjAfDx8TEunatbt67JErl/ioiIoG/fvri6ulKpUiV69OhhMitz7949Jk+eTN26dXF0dKRRo0asXbs26Yv//8fr4OBAWFgYTZs2xcnJCS8vL7Zu3WpsExISgoODAyEhISbH/nNZHzydiZwwYQKVKlWiYsWKia7vP/1zKeBff/3F8OHDqVq1Ki4uLnTo0IFjx44Z62/fvs3YsWOpU6cOZcuWxdXVlT59+hAZGQk8vabr1q3jypUrxuV/z1sK+Mcff9C/f3+qV6+Os7Mz3t7ehIaGGusTjtmyZQv9+/fHxcUFV1dX/Pz8TP4WT548yf/+9z8qVKiAi4sLnTp14vjx4y+97iIi/4USKxEReaELFy4AGGdrNm7cSJ8+fShSpAjz58+nb9++bNiwgd69e5skSH/++SfBwcHMnDkTX19fsmXLxrRp05g2bRru7u58+eWXtGjRghkzZrBo0SIADh8+TKdOnbC0tGTWrFl89tlnHDp0iI4dO/L48WNj3/Hx8QwcOJAGDRqwaNEiypcvz7Rp0/jll1+Ap8vXAFq0aGF8/zyjRo0yJjsLFiygffv2LF++3DiW3r1706tXL+BpkvbsUslnXb9+ndatW/PHH38wZswYpk+fzs2bN/nf//7H3bt3efz4Me3atWPjxo107doVf39/KlSowIgRI/jyyy9f6Xvo0aMHHh4ezJs3j8KFCzNw4ECCg4Nf6dhnbdmyhVOnTjFlyhSGDx/Onj176NatG3FxcS899sGDB7Rt25aQkBA+/fRT5s2bR8aMGencuTN//PEHBoOBHj16sG/fPoYOHUpAQAB9+/blwIEDxmvXu3dvatWqRa5cuVi1ahW1a9dOdJ7w8HCaNWtGZGQkfn5+zJgxAzMzM/73v/9x6NAhk7ajR48mX758+Pv706VLF9auXcuCBQsAuH//Pl27diVHjhzMnTuXmTNn8ujRI7p06cK9e/f+9bUTEXkZLQUUEREMBgNPnjwxfo6KiuLQoUMsWLAAFxcXypYti8FgYMaMGdSoUYMZM2YY2xYqVIhOnToRHBxsvFF+8uQJw4cPp2LFigD8/fffLF26lA4dOvDpp58CUK1aNW7cuMHhw4fp0aMHn3/+OYULF2bhwoWYm5sDUK5cORo2bMj3339P+/btjbH27t2bli1bAlChQgV27NjBnj17qFGjhnFZWZ48eV64xCw8PJy1a9cyZMgQ40YK1atXJ3fu3AwbNoyff/6ZWrVqGZ/7KVWqFPnz539uX4GBgcTExPD111+TK1cuAEqWLEnbtm0JCwvjypUrnD17lu+++w4XFxcAatSowZMnT/D396dNmzZkz549ye/H29ubPn36GI9t2rQp8+fPp1atWkke9085cuQgICCAzJkzGz/36dOHn3/+mTp16iR5bMJM07p16yhVqhQA5cuX5+OPP+bw4cNkypSJTJkymXzvlStX5tKlS8YE94MPPsDGxsZk+d+zM0zwNIm1sLBg6dKlWFlZAVC7dm0aNWrEtGnTTGb6atWqxfDhwwGoWrUq+/btY8+ePQwZMoTw8HDu3LlDx44dKV++PABFihRh1apVPHjwAGtr63917UREXkYzViIiwuHDhylTpozxVa1aNQYPHkzZsmX5/PPPMTMzIyIigmvXruHu7s6TJ0+Mr0qVKmFlZcW+fftM+ky4+QY4fvw4T5484cMPPzRp4+fnx+LFi3n06BFhYWHUqlXLmOQ9efKEAgUKULRo0UR9JyQo8PQZHRsbm0Q36ElJmPlo2LChSXnDhg0xNzdPtKwuKaGhoTg7OxuTKnia1P3000/UqlWLQ4cOkS9fPpOYARo3bkx0dDRhYWHEx8ebXNNnk1yApk2bGt+bmZnh6enJr7/+ajKT9ypq1aplTKrg6U6B6dOn5/Dhw680zvz585t8r5kyZWLbtm20bNkSOzs7li5dSoUKFYiMjGTfvn0sW7aMo0ePEhMT88oxHjp0iDp16hiTKoD06dPTsGFDTp48yYMHD4zl/0yc8+TJY/w7KF68ODY2NvTs2ZNRo0axY8cOcubMyaeffpriG3KIiIBmrEREBChTpgxjx44Fnt64Z8yYEXt7e5Ob24SNHMaOHWts+6y//vrL5HOWLFkSHWtjY/Pc8//999/Ex8fz1Vdf8dVXXyWqz5gxo8lnS0tLk8/p0qX7V7+NlLCF/LPJEDy9gc+RI8e/Wip29+7dF85mJZzrn+cByJkzJ/B07PPnz2fevHkm9WfOnDG+z507t0mdra0tBoOBv//++5XjhMTjTZcuHTly5Hilfu7evYutrW2SbTZs2MAXX3zB1atXyZ49O6VKlUr0Xb1MVFSU8do8K2fOnBgMBu7fv28sy5Qpk0mbZ/8OsmTJwooVK1iwYAFbtmxh1apVWFpa0qRJE/z8/LCwsPhXcYmIvIwSKxERIUuWLDg6OibZJmvWrAAMGzYMV1fXRPXZsmV76bG3b9+mSJEixvI///yTS5cuUbZsWczMzOjUqVOiWSRIfAOdXAmx3rhxg3z58hnLY2NjuXPnDjly5HjlvqytrZ+7AcSBAwfInz8/2bJl4+LFi4nqb9y4ATxdjufq6vrc540S3L171yTZuHnzJubm5mTPnt24DX58fLzJMQ8ePDBJbhP6eVZcXBx37tx5acIET8eZsAnFs44ePUq2bNm4c+cOw4cPx9vbmy5dumBnZwfAtGnTTDaeeJls2bJx8+bNROXPXq9/JvEvUqRIEaZPn05cXBy//vor69ev59tvv+WDDz6ga9eurxyTiMir0FJAERF5JUWKFMHW1pbIyEgcHR2NLzs7Oz7//HNOnz79wmOdnJzIkCEDP/30k0n5kiVLGDx4MJkzZ6Z06dJERESY9F28eHHmzp37r5bmwdOZi6QkJIY//vijSfmPP/5IXFwcFSpUeOVzVaxYkbCwMJPk6tatW3Tt2pXg4GAqVarElStXTHbPg6ezOxkyZMDJyQk7OzuTcf8zyd25c6fxvcFgYPv27VSoUAELCwvjrOK1a9eMbaKiokx2JUywb98+k2W
"text/plain": [
"<Figure size 900x1200 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"C:\\Users\\radvanyi\\AppData\\Local\\Temp\\ipykernel_30956\\1686009801.py:29: UserWarning:\n",
"\n",
"FixedFormatter should only be used together with FixedLocator\n",
"\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA1YAAAP0CAYAAACpiK2OAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd1hUR/v/8TeiBAuoWBBLNDZsINhQgw3E3nv/Gis2bIm9lyhiYsdYgy2JDWs01miiRlSMRiUWBAuJGmzERhH4/eGPfdwgaAKIyOd1XXtlz8ycOfecJc+zd2bOrElsbGwsIiIiIiIi8p9lSO0ARERERERE0jolViIiIiIiIkmkxEpERERERCSJlFiJiIiIiIgkkRIrERERERGRJFJiJSIiIiIikkRKrERERERERJJIiZWIiIiIiEgSKbESEZH/LLV/Yz69Xz+90n0XkXeREisRkffAuXPn+Oyzz6hduzb29vbUrVuX8ePHc/PmzRS53t9//82IESM4depUou1CQkKwtbXF19cXAF9fX2xtbQkJCUlyDAcOHGDkyJGGYz8/P2xtbfHz80ty36/zpuN/X7zJ5/bP+79gwQJsbW2TNY7IyEg+//xzduzYYSgbNWoULi4uyXodEZH/QomViEgat27dOjp06MC9e/cYPnw4y5Yto0+fPpw4cYI2bdpw8eLFZL/m77//zrZt24iJiUm0Xd68eVm/fj21a9dO9hh8fHy4deuW4bhs2bKsX7+esmXLJvu1/ulNx5+etW3blvXr1ydrn3/99RerVq3i+fPnhrL+/fuzcOHCZL2OiMh/kTG1AxARkf/O39+f6dOn07lzZ8aOHWsod3Jyom7durRo0YIxY8YYZozeNjMzMxwcHN7KtbJly/bWriWvly9fPvLly5fi1/nwww9T/BoiIm9CM1YiImnYihUrsLCwYNiwYfHqrKysGDVqFK6urjx9+hSA6Oho1q1bR9OmTbG3t6d27drMnj2biIgIw3mjRo2ie/fubN68mfr161OuXDmaN2/OTz/9BLxY8tWtWzcAunXrRteuXQHo2rUrn376KR4eHjg4OPDJJ5/EWwoY5/Tp07Ro0YJy5crRpEkTdu3aZahLaElf165dja514sQJTpw4YWj7qvPOnTtHz549cXJyokKFCri7u3PlypV41/rll1/o0aMH5cuX5+OPP8bLy4vo6OhX3vOExg+wa9cuWrVqhaOjIx9//DETJkwgLCzslf3EiY2NxcfHh4YNG2Jvb4+bmxsrVqwweo7o6NGjdOrUiYoVK+Lk5MTw4cONZusS4uLiwpw5c/j888+pXLkyTk5OjBgxgocPH77yvv7zvvzzM0jsc/unVy0F3Lp1Ky1btqR8+fLUrl2bL774gsjISEP9/v376dSpE46OjpQrV44GDRqwbt064MWyUldXVwBGjx5tWP73z6WAyfE3DhATE8OcOXNwcXGhXLlyuLi48MUXXxAVFZXoPReR9EuJlYhIGhUbG8uRI0eoVq0amTNnfmWbRo0aMWDAALJkyQLAhAkTmDFjBnXr1mXx4sV07tyZtWvX0r9/f6Mv8ufPn2fFihV4eHiwaNEiTE1NGTRoEGFhYZQtW5YJEyYY+ps4caLhvN27d5M1a1YWL15Mr169Eox9woQJNGzYEG9vb0qUKMHQoUPZv3//G4994sSJlClThjJlyiS4/O/48eN07NgRgM8//5xp06Zx69YtOnTowNWrV43afvrpp1SsWJGvvvqKJk2asHz5cjZu3PjKayc0fm9vb4YNG4aDgwPz589nwIAB7Nmzh65duxIeHp7gWGbNmsWsWbNwcXHhq6++ok2bNsyePZulS5cCL5KRHj16YGNjw5dffsno0aP59ddfad++Pffu3Xvtvfrmm284ffo0M2bMYPjw4Rw+fJi+ffv+pw0gkvK5rVu3jpEjR1K2bFkWLlxInz59WLNmDdOmTQPg0KFDDBgwgLJly+Lt7c2CBQsoVKgQU6ZM4ezZs+TNm9ew5K9fv34JLv9Ljr9xgGXLlvHtt98yYMAAVq5cSceOHVmxYgWLFy/+1/dNRNIHLQUUEUmjHjx4QEREBAULFnyj9oGBgWzatInhw4fTp08fAD7++GPy5s3LiBEj+Omnn6hVqxYAjx49wtfX17DMKkuWLHTp0oXjx49Tv359ihcvDkDx4sUN7wEyZcrE5MmTMTMzA0hws4NBgwbRs2dPAGrWrMm1a9fw9vambt26bzSW4sWLky1bNoAEl/998cUXFC5cmKVLl2JqagqAs7Mzbm5uzJ8/n3nz5hnatm3blgEDBgBQrVo19u/fz6FDh+jQoUO8frNlyxZv/GFhYSxevJh27doZki6AkiVL0rlzZzZv3kznzp3j9fX333+zevVqunTpwmeffQZA9erVCQ0N5eTJk/Tu3ZvZs2fj7OzMF198YTivQoUKNGrUiBUrVjBixIhE71WGDBn4+uuvsbCwAF7MZA4YMICff/6ZmjVrJnruP/3Xzy0mJoZFixZRt25dQyIF8OzZM77//nuioqIIDAykZcuWRktaHR0dcXJyws/Pj/Lly1O6dGngxfK/MmXKxLtOcv6NnzhxgnLlytG6dWsAqlSpQubMmQ33UUTknzRjJSKSRsUlCwktWfunEydOANC4cWOj8saNG2Nqamq07MvKysro2ZW4Z2WePXuW6DWKFi1qSKoS06hRI6PjunXrEhAQwJMnT1577pt4+vQp586do2HDhob7BGBpaUmdOnUM9yKOo6Oj0XG+fPkMyyffxJkzZ4iMjKRJkyZG5ZUqVaJAgQLxrvfyec+fP6devXpG5ePGjWP58uUEBwcTGhoar98PP/wQR0dHQ7/Pnz83er28qYaLi4tRMuDi4kLGjBk5efLkG48vzn/93IKDg7l37x5ubm5G5T179sTX15dMmTLRq1cvZs6cyZMnTzh//jy7du1iyZIlAEbLBROTnH/jTk5OhiWYy5cvJzAwkC5dutC8efM3ikVE0h8lViIiaVT27NnJmjUrf/75Z4Jtnj59aljaFPfPPHnyGLXJmDEjOXPm5NGjR4ayfy4tNDExAXjtLnhZs2Z9o9hz585tdJwrVy5iY2N5/PjxG53/Oo8ePSI2NjbedeKu/fJYAczNzY2OM2TI8K+WysXd2ze9Xpy4Z52srKwSrX9dv2XLljV6LVq0yNDO2tra6LwMGTKQM2fO1z779Sr/9XOLG0euXLkSbHP//n0GDRpEpUqVaNeuHQsWLDD0+6afRXL+jffq1YsJEyYQHh7O7Nmzady4MU2aNOH48eNvFIuIpD9aCigikoY5Ozvj5+dHREQEH3zwQbz6DRs24OnpyaZNm8iePTsAoaGhFChQwNAmKiqKBw8ekDNnzrcWd1hYmNGX9Lt372Jqakr27NkTTOKePHnyxombhYUFJiYm3L17N15daGgoOXLk+O/Bv0Lcvb179y5FixaNd71ChQq98jxLS0vgRVLx8nl//vknN27cMHwmCY0jrn7Tpk1GdXnz5jW8f/DggVFddHQ0Dx48MErm/jnrmdBsXWKfW2JeHufLHjx4QEBAAI6Ojnz66acEBQXh4+ODo6MjZmZmPHv2jA0bNiTa98uS8288Q4YMdO7cmc6dO3Pv3j0OHz7MV199xaBBgzh69OgbzcyKSPqiGSsRkTSsR48ePHz4kLlz58arCw0NZeXKlRQvXpyyZctSpUoVAL7//nujdt9//z3R0dFUrFjxja/78vK6/+LQoUOG9zExMfzwww+UL18ec3Nzw7NTt2/fNrQJCwuLt+FEhgwJ/19YlixZKFeuHLt37zZKGh49esShQ4f+1Vhf5Z/jL1++PGZmZuzcudOo/NSpU/z5559UqFDhlf3Y29uTKVMmfvzxR6PylStXMmzYMEqUKEGePHni9Xvz5k3OnDlj6NfOzs7o9fIs1U8//WS0lO7AgQM8f/6catWqAS+eGXv5XsOLbfxfJbHPLTFFixYlZ86c8ca5bds2+vTpQ1RUFP7+/tSrVw8nJydD0hK3S19ckv26v7vk/Bvv0KGD4XmwXLly0apVKzp37szff/+dbDOrIvJ+0YyViEga5uD
"text/plain": [
"<Figure size 900x1200 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"collab_desc = wos_collabs[wos_collabs[\"Country\"]!=\"China\"][\"Country\"].value_counts().reset_index()\n",
"collab_desc[\"percent_of_copubs\"] = collab_desc[\"count\"]/wos_collabs[record_col].nunique()*100\n",
"collab_desc[\"percent_contrib_in_copubs\"] = collab_desc[\"count\"]/wos_collabs[record_col].size*100\n",
"collab_desc = collab_desc.merge(wos_country_types, on=\"Country\")\n",
"collab_desc\n",
"\n",
"c_dict = {\"count\":\"Number of co-publications\",\n",
" \"percent_of_copubs\":\"Percent of co-publications\",\n",
" \"percent_contrib_in_copubs\":\"Contribution to co-publications\"}\n",
"\n",
"\n",
"# Creating subplot axes\n",
"# fig, axes = plt.subplots(ncols=3,figsize=(15, 15))\n",
"# for c,ax in zip(c_dict.keys(),axes.flatten()):\n",
"for c in c_dict.keys():\n",
" data = collab_desc[[\"Country\",c,\"Country_Type\"]]\n",
" plt.figure(figsize=(9,12))\n",
" g = sns.barplot(data, x=c, y=\"Country\", hue=\"Country_Type\", dodge=False)\n",
" g.set_xlim(0,roundToNearest(data[c].max()))\n",
" g.set_ylabel(None)\n",
" g.set_xlabel(c_dict.get(c))\n",
" g.set_title(c_dict.get(c))\n",
" g.legend(title=None, loc=\"right\")\n",
" for i in g.containers:\n",
" g.bar_label(i,fontsize=10, fmt='%.1f%%' if 'percent' in c else '%.0f')\n",
" if 'percent' in c:\n",
" g.xaxis.set_major_locator(MaxNLocator(integer=True))\n",
" vals = g.get_xticks()\n",
" g.set_xticklabels([str(int(val))+'%' for val in vals])\n",
" plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 362,
"id": "140395ac",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Text(0.5, 71.74999999999994, '')"
]
},
"execution_count": 362,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA7gAAAM9CAYAAAC2RN8wAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeXxN1/7/8VdEIkIkQojG1EYlpiRCzJREa57plxQlVdzbGltThYpSMdTc1lxDqoaaQqkheqnbomY1hSCGmmoOGSW/P/yc29MMQs9xInk/H4/zuOesvfZnf/ZJ9HE/WWuvZZWSkpKCiIiIiIiIyEsul6UTEBERERERETEFFbgiIiIiIiKSLajAFRERERERkWxBBa6IiIiIiIhkCypwRUREREREJFtQgSsiIiIiIiLZggpcERERERERyRZU4IqIiIiIiEi2oAJXREREREREsoXclk5AREREREQku0j886ylUzCwKfyapVN44TSCKyIiIiIiItmCClwRERERERHJFjRFWURERERExFSSH1k6gxxNI7giIiIiIiKSLWgEV0RERERExFRSki2dQY6mEVwRERERERHJFlTgioiIiIiISLagKcoiIiIiIiKmkqwpypakEVwRERERERHJFlTgPoOYmBi8vb2pVasWiYmJJo2dmJjIwoULM+yzevVqPDw8THpdERERERGR7EIF7jP44YcfKFSoEPfv32fr1q0mjb1hwwbGjRuXYZ+mTZuya9cuk15XRERERERMJyUlOcu8ciIVuM9g1apV1K1blxo1arBs2TKTxk5JSXlqHzs7O1xcXEx6XRERERERkexCBW4mRUVFcfjwYWrXrs1bb73Fnj17OHfunOG4v78/M2bMMDrnr22PHj1i4sSJvPHGG1SsWJHGjRvz3XffAY+nHg8bNgwADw8P9uzZw4wZM+jcuTMDBgzA19eXzz77LNUU5cjISHr16oWfnx8VK1YkICCABQsWmPurEBERERGR9CQnZ51XDqQCN5O+//577O3tqVevHm+++SY2NjbPNIq7dOlSfvzxR6ZMmcLmzZvp3Lkzo0aNYt++fTRt2pRPPvkEgF27dlG5cmUAfvvtNwoXLsy6devo0qWLUbzY2FiCgoJwcnJi2bJlbNiwgcaNGzN+/HhOnDhhuhsXERERERF5SajAzYSkpCTCw8Px9/fHzs4OJycn6tSpw9q1a4mPj89UjAsXLmBvb0/x4sVxc3Ojc+fOfPPNN7z66qvY2dnh4OAAgIuLC7a2tobz+vbtS4kSJShdurRRvNjYWLp27crIkSNxd3endOnS9O3bF4BTp06Z5sZFREREREReItoHNxN27NjBn3/+SbNmzQxtzZo146effmLTpk20bt36qTHeeecdtm3bxhtvvEG5cuWoXbs2zZo1o1ChQumeU6hQIUPh+3fOzs4EBgayYcMGjh8/zoULFzh58iQAyRlMRwgICMgwz4iIiKfei4iIiIiIpCOHLu6UVajAzYTVq1cD8OGHH6Y6tmzZsnQL3KSkJMP70qVLs2XLFvbu3ct///tf/vOf/zB37lzGjRtHmzZt0jzfzs4u3Zxu3LjB//3f/+Hs7Iy/vz916tShUqVKvPHGG89wZyIiIiIiItmHCtynuHnzJjt27KBt27Z0797d6NjChQtZtWoVkZGR2NjYEBMTYzgWExPDzZs3DZ8XL15MoUKFaNasGbVr12bw4MF0796djRs30qZNG6ysrJ4prw0bNnDnzh02b96MjY0N8L+pyRmtyKwRWhERERERya5U4D5FeHg4SUlJvP/++7z22mtGx3r37s2aNWtYtmwZPj4+bNy4kUaNGlGgQAGmT5+OtbW1oe+tW7f48ssvsbOzw9PTk7Nnz3LixAm6du0KgL29PQC///47ZcqUeWperq6uxMbG8uOPP1KlShXOnj1r2Ec3ISHBVLcvIiIiIiLPIvmRpTPI0VTgPsXq1aupVatWquIWoGTJkjRs2JDw8HB++OEH7ty5Q/fu3XFwcCAoKIh79+4Z+n744YckJiYyZswYbty4gYuLC506daJXr14A1KhRA29vbzp27MjEiROfmlfjxo05duwYoaGhxMTE4ObmRocOHYiIiODo0aN06tTJdF+CiIiIiIjIS8AqJaP5rCIiIiIiIpJpCdEHLJ2CgW0pX0un8MJpBFdERERERMRUtIqyRWkfXBEREREREckWNIIrIiIiIiJiKskawbUkjeCKiIiIiIhItqACV0RERERERLIFTVEWERERERExkRQtMmVRGsEVERERERERI8nJyUyfPp26devi4+PD+++/z8WLF9Ptf/v2bT766CP8/PyoVq0aISEhxMbGGvXZtGkTTZs2xcvLi9atW/Prr78ajs2YMQMPD480X8OGDct03toHV1KpWLSGyWP+fm23yWOKiIiIiGQ18VFZ5//35nF//v9fP3PmTMLCwggNDcXV1ZWJEydy6dIl1q9fj62tbar+Xbp0ITY2lpCQEO7du8fw4cPx8/Nj/PjxAOzevZsePXowePBgateuzffff09YWBhr167F3d2dBw8e8PDhQ6OY33zzDd999x3Lli3Dw8MjU3mrwJVUVOCKiIiIiDyf+NO/WDoFgzyv13qu8xISEqhRowYff/wxgYGBANy7d4+6desyduxYmjdvbtT/4MGDdOzYkY0bN+Lu7g7Arl276NGjBzt27KBo0aK89957ODg4MHXqVMN5HTt2pGzZsowePTpVDsePH+ftt9/ms88+o02bNpnOXVOURURERERExODkyZM8ePCAmjVrGtoKFChA+fLl+e2331L137dvHy4uLobiFqBatWpYWVmxf/9+kpOTOXDggFE8gOrVq6cZD2D06NFUrVr1mYpb0CJTIiIiIiIippOFFpkKCAjI8HhERESa7VevXgWgWLFiRu1FihQxHPura9eupepra2uLk5MTV65c4d69ezx8+BBXV9dMxfvpp584ePAga9euzTD/tOT4EVx/f3+jB5grVqxIo0aNmDdvXqZj7NmzBw8PDy5dumSW/iIiIiIiIi/Kk8Wh/v6sbZ48eYiPj0+zf1rP5T7pHxcX90zxvvnmGxo0aEC5cuWeOXeN4AJBQUEEBQUBEBcXx5EjRwgODiZv3ry88847Jr9e5cqV2bVrF87OziaPLSIiIiIiAumP0D6NnZ0d8PhZ3CfvAeLj48mbN2+a/RMSElK1x8fHY29vT548eQzx/n787/H++OMP9uzZw5w5c54r9xw/ggtgb2+Pi4sLLi4ulChRgmbNmtGiRQtWrVplluvZ2tri4uKCtbW1WeKLiIiIiIiFJD/KOq/n9GS68fXr143ar1+/TtGiRVP1d3V1TdU3ISGBO3fuUKRIEZycnLC3t89UvG3btuHs7Ezt2rWfK3cVuOn4618qUlJSmDt3LgEBAXh7e9OqVSvCw8PTPffRo0dMmTKFOnXq4OPjQ9++fRk7dixdunQBUk9R9vf3Z8aMGUYx/tq2evVq3nzzTZYtW0b9+vXx9vamb9++XLt2jY8//pjKlStTr149vv/+e1N/DSIiIiIiksN4enqSP39+9uzZY2i7d+8ex48fx8/PL1V/Pz8/rl69SnR0tKFt7969AFSpUgUrKyt8fX0NbU/s2bOHqlWrGrXt27ePatWqkTv38002VoGbhiNHjrBhwwY6dOgAwJQpU/juu+8YMWIE69evp2vXrowaNYpvv/02zfMnTZrE8uXL+fTTT1m1ahUuLi4sWbLkH+X0xx9/8OOPPzJnzhymT59OREQELVq0oEKFCqxatYp69eoxatQobt++/Y+uIyIiIiIiOZutrS2dO3dm0qRJREREcPLkSQYMGICrqytvvfUWjx494saNG4Zna729vfH19WXAgAEcOXKE3bt3M3LkSFq3bm0Yoe3evTs//PAD33zzDVFRUUyYMIETJ07w7rvvGl37+PHjeHp6PnfuegYXmD17NgsWLAAgMTGRxMREvL29adGiBQ8fPmThwoVMnjyZ+vXrA1CyZEkuX77M/PnzUz2jGxsby9KlSxk2bBhvvvkmAMHBwRw8ePAf5ZiUlMSIESNwd3enbNm
"text/plain": [
"<Figure size 1100x900 with 2 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"wos_collabs_EU = wos_univ_locations[~wos_univ_locations[\"Country_Type\"].isin([\"Other\",\"China\"])][[record_col,\"Country\"]].drop_duplicates()\n",
"wos_collabs_EU = wos_collabs_EU.merge(wos_collabs_EU, on=record_col)\n",
"EU_co_occur = pd.crosstab(wos_collabs_EU['Country_x'], wos_collabs_EU['Country_y'], values=wos_collabs_EU[record_col], aggfunc='nunique', normalize='all').fillna(0)\n",
"\n",
"# Generate a mask for the upper triangle\n",
"mask = np.triu(np.ones_like(EU_co_occur, dtype=bool))\n",
"\n",
"# Set up the matplotlib figure\n",
"f, ax = plt.subplots(figsize=(11, 9))\n",
"\n",
"# Draw the heatmap with the mask and correct aspect ratio\n",
"g = sns.heatmap(EU_co_occur, mask=mask,\n",
" square=True, linewidths=.5)\n",
"\n",
"g.set_ylabel(None)\n",
"g.set_xlabel(None)"
]
},
{
"cell_type": "code",
"execution_count": 363,
"id": "c959287e",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Index(['Austria', 'Belgium', 'Bulgaria', 'Croatia', 'Cyprus', 'Czech Republic',\n",
" 'Denmark', 'Estonia', 'Finland', 'France', 'Germany', 'Greece',\n",
" 'Hungary', 'Ireland', 'Italy', 'Latvia', 'Lithuania', 'Luxembourg',\n",
" 'Malta', 'Netherlands', 'Norway', 'Poland', 'Portugal', 'Romania',\n",
" 'Slovakia', 'Slovenia', 'Spain', 'Sweden', 'Switzerland',\n",
" 'United Kingdom'],\n",
" dtype='object', name='Country_y')"
]
},
"execution_count": 363,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"wos_collabs_EU = wos_univ_locations[~wos_univ_locations[\"Country_Type\"].isin([\"Other\",\"China\"])][[record_col,\"Country\"]].drop_duplicates()\n",
"wos_collabs_EU = wos_collabs_EU.merge(wos_collabs_EU, on=record_col)\n",
"wos_collabs_EU\n",
"EU_co_occur = pd.crosstab(wos_collabs_EU['Country_x'], wos_collabs_EU['Country_y'], values=wos_collabs_EU[record_col], aggfunc='nunique').fillna(0).astype(int)\n",
"\n",
"\n",
"# Generate a mask for the upper triangle\n",
"mask = np.triu(np.ones_like(EU_co_occur, dtype=bool))\n",
"data = np.where(mask,None,EU_co_occur)\n",
"EU_co_occur.columns"
]
},
{
"cell_type": "code",
"execution_count": 364,
"id": "57f3f135",
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.plotly.v1+json": {
"config": {
"displayModeBar": false,
"plotlyServerURL": "https://plot.ly"
},
"data": [
{
"coloraxis": "coloraxis",
"hovertemplate": "Country (x): %{x}<br>Country (y): %{y}<br>Co-publication: %{z}<extra></extra>",
"name": "0",
"type": "heatmap",
"x": [
"Austria",
"Belgium",
"Bulgaria",
"Croatia",
"Cyprus",
"Czech Republic",
"Denmark",
"Estonia",
"Finland",
"France",
"Germany",
"Greece",
"Hungary",
"Ireland",
"Italy",
"Latvia",
"Lithuania",
"Luxembourg",
"Malta",
"Netherlands",
"Norway",
"Poland",
"Portugal",
"Romania",
"Slovakia",
"Slovenia",
"Spain",
"Sweden",
"Switzerland",
"United Kingdom"
],
"xaxis": "x",
"y": [
"Austria",
"Belgium",
"Bulgaria",
"Croatia",
"Cyprus",
"Czech Republic",
"Denmark",
"Estonia",
"Finland",
"France",
"Germany",
"Greece",
"Hungary",
"Ireland",
"Italy",
"Latvia",
"Lithuania",
"Luxembourg",
"Malta",
"Netherlands",
"Norway",
"Poland",
"Portugal",
"Romania",
"Slovakia",
"Slovenia",
"Spain",
"Sweden",
"Switzerland",
"United Kingdom"
],
"yaxis": "y",
"z": [
[
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null
],
[
160,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null
],
[
100,
75,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null
],
[
64,
75,
58,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null
],
[
55,
57,
51,
49,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null
],
[
193,
119,
94,
70,
52,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null
],
[
160,
116,
53,
22,
15,
126,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null
],
[
74,
94,
66,
62,
53,
67,
37,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null
],
[
176,
167,
68,
83,
59,
110,
142,
105,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null
],
[
287,
291,
114,
87,
65,
228,
236,
112,
265,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null
],
[
427,
329,
111,
100,
68,
275,
325,
113,
322,
857,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null
],
[
193,
127,
96,
72,
76,
171,
169,
81,
145,
243,
268,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null
],
[
160,
111,
96,
64,
53,
171,
123,
65,
109,
223,
274,
162,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null
],
[
100,
111,
68,
60,
47,
99,
83,
68,
125,
174,
203,
105,
83,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null
],
[
297,
274,
115,
100,
65,
233,
250,
111,
257,
720,
736,
278,
228,
171,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null
],
[
66,
62,
45,
38,
34,
65,
33,
45,
67,
71,
71,
64,
66,
62,
72,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null
],
[
82,
91,
59,
58,
48,
85,
38,
61,
88,
93,
91,
82,
84,
72,
92,
65,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null
],
[
10,
13,
4,
4,
2,
3,
12,
12,
21,
20,
31,
13,
2,
10,
21,
0,
0,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null
],
[
1,
4,
0,
2,
0,
2,
3,
3,
2,
7,
7,
8,
4,
3,
12,
1,
4,
0,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null
],
[
216,
252,
59,
36,
13,
160,
258,
55,
192,
465,
661,
178,
168,
123,
489,
33,
41,
17,
4,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null
],
[
130,
72,
41,
28,
11,
101,
183,
32,
117,
240,
303,
127,
124,
42,
246,
5,
11,
16,
2,
224,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null
],
[
206,
154,
101,
84,
61,
206,
157,
83,
161,
306,
378,
199,
194,
112,
341,
67,
112,
16,
3,
256,
159,
null,
null,
null,
null,
null,
null,
null,
null,
null
],
[
187,
148,
102,
79,
59,
178,
161,
83,
168,
270,
306,
197,
170,
102,
296,
65,
86,
15,
3,
218,
145,
210,
null,
null,
null,
null,
null,
null,
null,
null
],
[
142,
78,
64,
43,
16,
140,
133,
34,
85,
203,
198,
141,
132,
64,
214,
34,
42,
9,
4,
175,
112,
171,
164,
null,
null,
null,
null,
null,
null,
null
],
[
114,
45,
47,
16,
4,
121,
112,
25,
54,
131,
150,
116,
140,
38,
137,
28,
28,
7,
1,
126,
100,
126,
118,
123,
null,
null,
null,
null,
null,
null
],
[
127,
45,
46,
23,
2,
116,
105,
18,
41,
143,
149,
105,
120,
35,
160,
32,
34,
3,
2,
131,
89,
123,
111,
112,
100,
null,
null,
null,
null,
null
],
[
263,
253,
109,
90,
62,
225,
251,
102,
258,
638,
720,
250,
219,
161,
597,
68,
98,
22,
6,
443,
226,
325,
321,
195,
134,
146,
null,
null,
null,
null
],
[
191,
139,
51,
32,
12,
157,
260,
55,
248,
375,
490,
164,
147,
90,
362,
37,
40,
20,
6,
353,
252,
231,
191,
156,
120,
132,
347,
null,
null,
null
],
[
258,
196,
105,
73,
60,
203,
206,
93,
197,
469,
620,
201,
174,
132,
433,
66,
81,
17,
3,
328,
164,
242,
228,
159,
116,
117,
393,
253,
null,
null
],
[
369,
402,
115,
101,
87,
261,
399,
128,
422,
974,
1405,
350,
260,
254,
893,
74,
100,
47,
12,
759,
399,
420,
377,
216,
152,
156,
852,
557,
616,
null
]
]
}
],
"layout": {
"coloraxis": {
"colorbar": {
"title": {
"text": "Co-publication"
}
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
]
},
"height": 1000,
"template": {
"data": {
"bar": [
{
"error_x": {
"color": "#2a3f5f"
},
"error_y": {
"color": "#2a3f5f"
},
"marker": {
"line": {
"color": "white",
"width": 0.5
},
"pattern": {
"fillmode": "overlay",
"size": 10,
"solidity": 0.2
}
},
"type": "bar"
}
],
"barpolar": [
{
"marker": {
"line": {
"color": "white",
"width": 0.5
},
"pattern": {
"fillmode": "overlay",
"size": 10,
"solidity": 0.2
}
},
"type": "barpolar"
}
],
"carpet": [
{
"aaxis": {
"endlinecolor": "#2a3f5f",
"gridcolor": "#C8D4E3",
"linecolor": "#C8D4E3",
"minorgridcolor": "#C8D4E3",
"startlinecolor": "#2a3f5f"
},
"baxis": {
"endlinecolor": "#2a3f5f",
"gridcolor": "#C8D4E3",
"linecolor": "#C8D4E3",
"minorgridcolor": "#C8D4E3",
"startlinecolor": "#2a3f5f"
},
"type": "carpet"
}
],
"choropleth": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "choropleth"
}
],
"contour": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "contour"
}
],
"contourcarpet": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "contourcarpet"
}
],
"heatmap": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "heatmap"
}
],
"heatmapgl": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "heatmapgl"
}
],
"histogram": [
{
"marker": {
"pattern": {
"fillmode": "overlay",
"size": 10,
"solidity": 0.2
}
},
"type": "histogram"
}
],
"histogram2d": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "histogram2d"
}
],
"histogram2dcontour": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "histogram2dcontour"
}
],
"mesh3d": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "mesh3d"
}
],
"parcoords": [
{
"line": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "parcoords"
}
],
"pie": [
{
"automargin": true,
"type": "pie"
}
],
"scatter": [
{
"fillpattern": {
"fillmode": "overlay",
"size": 10,
"solidity": 0.2
},
"type": "scatter"
}
],
"scatter3d": [
{
"line": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatter3d"
}
],
"scattercarpet": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattercarpet"
}
],
"scattergeo": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattergeo"
}
],
"scattergl": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattergl"
}
],
"scattermapbox": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattermapbox"
}
],
"scatterpolar": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterpolar"
}
],
"scatterpolargl": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterpolargl"
}
],
"scatterternary": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterternary"
}
],
"surface": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "surface"
}
],
"table": [
{
"cells": {
"fill": {
"color": "#EBF0F8"
},
"line": {
"color": "white"
}
},
"header": {
"fill": {
"color": "#C8D4E3"
},
"line": {
"color": "white"
}
},
"type": "table"
}
]
},
"layout": {
"annotationdefaults": {
"arrowcolor": "#2a3f5f",
"arrowhead": 0,
"arrowwidth": 1
},
"autotypenumbers": "strict",
"coloraxis": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"colorscale": {
"diverging": [
[
0,
"#8e0152"
],
[
0.1,
"#c51b7d"
],
[
0.2,
"#de77ae"
],
[
0.3,
"#f1b6da"
],
[
0.4,
"#fde0ef"
],
[
0.5,
"#f7f7f7"
],
[
0.6,
"#e6f5d0"
],
[
0.7,
"#b8e186"
],
[
0.8,
"#7fbc41"
],
[
0.9,
"#4d9221"
],
[
1,
"#276419"
]
],
"sequential": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"sequentialminus": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
]
},
"colorway": [
"#636efa",
"#EF553B",
"#00cc96",
"#ab63fa",
"#FFA15A",
"#19d3f3",
"#FF6692",
"#B6E880",
"#FF97FF",
"#FECB52"
],
"font": {
"color": "#2a3f5f"
},
"geo": {
"bgcolor": "white",
"lakecolor": "white",
"landcolor": "white",
"showlakes": true,
"showland": true,
"subunitcolor": "#C8D4E3"
},
"hoverlabel": {
"align": "left"
},
"hovermode": "closest",
"mapbox": {
"style": "light"
},
"paper_bgcolor": "white",
"plot_bgcolor": "white",
"polar": {
"angularaxis": {
"gridcolor": "#EBF0F8",
"linecolor": "#EBF0F8",
"ticks": ""
},
"bgcolor": "white",
"radialaxis": {
"gridcolor": "#EBF0F8",
"linecolor": "#EBF0F8",
"ticks": ""
}
},
"scene": {
"xaxis": {
"backgroundcolor": "white",
"gridcolor": "#DFE8F3",
"gridwidth": 2,
"linecolor": "#EBF0F8",
"showbackground": true,
"ticks": "",
"zerolinecolor": "#EBF0F8"
},
"yaxis": {
"backgroundcolor": "white",
"gridcolor": "#DFE8F3",
"gridwidth": 2,
"linecolor": "#EBF0F8",
"showbackground": true,
"ticks": "",
"zerolinecolor": "#EBF0F8"
},
"zaxis": {
"backgroundcolor": "white",
"gridcolor": "#DFE8F3",
"gridwidth": 2,
"linecolor": "#EBF0F8",
"showbackground": true,
"ticks": "",
"zerolinecolor": "#EBF0F8"
}
},
"shapedefaults": {
"line": {
"color": "#2a3f5f"
}
},
"ternary": {
"aaxis": {
"gridcolor": "#DFE8F3",
"linecolor": "#A2B1C6",
"ticks": ""
},
"baxis": {
"gridcolor": "#DFE8F3",
"linecolor": "#A2B1C6",
"ticks": ""
},
"bgcolor": "white",
"caxis": {
"gridcolor": "#DFE8F3",
"linecolor": "#A2B1C6",
"ticks": ""
}
},
"title": {
"x": 0.05
},
"xaxis": {
"automargin": true,
"gridcolor": "#EBF0F8",
"linecolor": "#EBF0F8",
"ticks": "",
"title": {
"standoff": 15
},
"zerolinecolor": "#EBF0F8",
"zerolinewidth": 2
},
"yaxis": {
"automargin": true,
"gridcolor": "#EBF0F8",
"linecolor": "#EBF0F8",
"ticks": "",
"title": {
"standoff": 15
},
"zerolinecolor": "#EBF0F8",
"zerolinewidth": 2
}
}
},
"title": {
"text": "Intraeuropean patterns",
"x": 0.5
},
"width": 1000,
"xaxis": {
"anchor": "y",
"constrain": "domain",
"domain": [
0,
1
],
"scaleanchor": "y",
"showgrid": false,
"tickangle": -90,
"ticks": "outside",
"title": {
"text": "Country (x)"
}
},
"yaxis": {
"anchor": "x",
"autorange": "reversed",
"constrain": "domain",
"domain": [
0,
1
],
"showgrid": false,
"ticks": "outside",
"title": {
"text": "Country (y)"
}
}
}
},
"text/html": [
"<div> <div id=\"af59dd46-711e-491e-b2cc-24c294d1c173\" class=\"plotly-graph-div\" style=\"height:1000px; width:1000px;\"></div> <script type=\"text/javascript\"> require([\"plotly\"], function(Plotly) { window.PLOTLYENV=window.PLOTLYENV || {}; if (document.getElementById(\"af59dd46-711e-491e-b2cc-24c294d1c173\")) { Plotly.newPlot( \"af59dd46-711e-491e-b2cc-24c294d1c173\", [{\"coloraxis\":\"coloraxis\",\"name\":\"0\",\"x\":[\"Austria\",\"Belgium\",\"Bulgaria\",\"Croatia\",\"Cyprus\",\"Czech Republic\",\"Denmark\",\"Estonia\",\"Finland\",\"France\",\"Germany\",\"Greece\",\"Hungary\",\"Ireland\",\"Italy\",\"Latvia\",\"Lithuania\",\"Luxembourg\",\"Malta\",\"Netherlands\",\"Norway\",\"Poland\",\"Portugal\",\"Romania\",\"Slovakia\",\"Slovenia\",\"Spain\",\"Sweden\",\"Switzerland\",\"United Kingdom\"],\"y\":[\"Austria\",\"Belgium\",\"Bulgaria\",\"Croatia\",\"Cyprus\",\"Czech Republic\",\"Denmark\",\"Estonia\",\"Finland\",\"France\",\"Germany\",\"Greece\",\"Hungary\",\"Ireland\",\"Italy\",\"Latvia\",\"Lithuania\",\"Luxembourg\",\"Malta\",\"Netherlands\",\"Norway\",\"Poland\",\"Portugal\",\"Romania\",\"Slovakia\",\"Slovenia\",\"Spain\",\"Sweden\",\"Switzerland\",\"United Kingdom\"],\"z\":[[null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null],[160,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null],[100,75,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null],[64,75,58,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null],[55,57,51,49,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null],[193,119,94,70,52,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null],[160,116,53,22,15,126,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null],[74,94,66,62,53,67,37,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null],[176,167,68,83,59,110,142,105,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null],[287,291,114,87,65,228,236,112,265,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null],[427,329,111,100,68,275,325,113,322,857,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null],[193,127,96,72,76,171,169,81,145,243,268,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null],[160,111,96,64,53,171,123,65,109,223,274,162,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null],[100,111,68,60,47,99,83,68,125,174,203,105,83,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null],[297,274,115,100,65,233,250,111,257,720,736,278,228,171,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null],[66,62,45,38,34,65,33,45,67,71,71,64,66,62,72,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null],[82,91,59,58,48,85,38,61,88,93,91,82,84,72,92,65,null,null,null,null,null,null,null,null,null,null,null,null,null,null],[10,13,4,4,2,3,12,12,21,20,31,13,2,10,21,0,0,null,null,null,null,null,null,null,null,null,null,null,null,null],[1,4,0,2,0,2,3,3,2,7,7,8,4,3,12,1,4,0,null,null,null,null,null,null,null,null,null,null,null,null],[216,252,59,36,13,160,258,55,192,465,661,178,168,123,489,33,41,17,4,null,null,null,null,null,null,null,null,null,null,null],[130,72,
" \n",
"var gd = document.getElementById('af59dd46-711e-491e-b2cc-24c294d1c173');\n",
"var x = new MutationObserver(function (mutations, observer) {{\n",
" var display = window.getComputedStyle(gd).display;\n",
" if (!display || display === 'none') {{\n",
" console.log([gd, 'removed!']);\n",
" Plotly.purge(gd);\n",
" observer.disconnect();\n",
" }}\n",
"}});\n",
"\n",
"// Listen for the removal of the full notebook cells\n",
"var notebookContainer = gd.closest('#notebook-container');\n",
"if (notebookContainer) {{\n",
" x.observe(notebookContainer, {childList: true});\n",
"}}\n",
"\n",
"// Listen for the clearing of the current output cell\n",
"var outputEl = gd.closest('.output');\n",
"if (outputEl) {{\n",
" x.observe(outputEl, {childList: true});\n",
"}}\n",
"\n",
" }) }; }); </script> </div>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"fig = px.imshow(data,\n",
" labels=dict(x=\"Country (x)\", y=\"Country (y)\", color=\"Co-publication\"),\n",
" x=list(EU_co_occur.columns),\n",
" y=list(EU_co_occur.index), title=\"Intraeuropean patterns\"\n",
" )\n",
"fig.update_layout(title_x=0.5,\n",
" width=1000, height=1000,\n",
" xaxis_showgrid=False,\n",
" yaxis_showgrid=False,\n",
" yaxis_autorange='reversed', template='plotly_white')\n",
"fig.update_xaxes(tickangle= -90)\n",
"fig.update_yaxes(\n",
" ticks=\"outside\")\n",
"fig.update_xaxes(\n",
" ticks=\"outside\")\n",
"fig.show(config= dict(displayModeBar = False))"
]
},
{
"cell_type": "code",
"execution_count": 365,
"id": "df1f03ea",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Text(0.5, 1.0, 'Yearly output of co-publications with China')"
]
},
"execution_count": 365,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAjMAAAG1CAYAAAAMU3WaAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACEm0lEQVR4nOzdd3QUVR/G8e/uZtN7Dx1CkZ5AaNI7KiBFFAURAbFQbIhgQYooUvSVJiKgohRFelFERBGlJVTphNDTSSPJbrbM+0fMSiSBhOym8fucwznJzOy9d4ZN9smdO/eqFEVREEIIIYQoo9Ql3QAhhBBCiKKQMCOEEEKIMk3CjBBCCCHKNAkzQgghhCjTJMwIIYQQokyTMCOEEEKIMk3CjBBCCCHKNAkzQgghhCjTJMwIUYxsOUelzH9ZepX3/5vyfn6i9JMwI6xu4sSJ1KlThz179uS5/48//qBOnTrMnj3bpu1Yt24dderU4erVqzatp6AWLlzI0qVLbVL2mjVr+Oijj6xS1qxZs2jevDkhISFs2LDBKmWWhKeffpqnn376jsdMmDCBTp06Wb7v1KkTEyZMsGo7zp07x5NPPplrW506dZg3b55V6yku/71G/31fz5s3jzp16txz+bGxscycOZMePXrQuHFj2rRpwwsvvEB4eHiu4/77f5eX0vY7QNiOhBlhdRMnTsTf359JkyaRkZGRa9/NmzeZNGkSderUYezYsSXUwpLx6aefkpmZaZOyP/vsM5KTk4tcztmzZ1myZAndu3dnyZIltGvXruiNK0Pmz5/PSy+9ZNUyf/rpJw4fPpxr23fffceAAQOsWk9x+e81sub7OiIigkcffZRdu3YxZMgQFi1axNtvv41Op+Ppp58udLju0KED3333Hf7+/lZpnyi97Eq6AaL8cXd3Z8qUKbz44ot88sknvP3225Z9c+bMIT4+ns8++wx7e/sSbKXIS04geuSRRwgLCyvZxpSAevXqFUs9ISEhxVKPLdjqGiUnJ/PKK69QrVo1vvzyS5ycnCz7unfvzsiRI5k0aRJt2rTB19e3QGV6e3vj7e1tk/aK0kV6ZoRNdOrUiV69evHtt99y9OhRIPuvrlWrVjF27FgeeOABAK5fv85rr71G8+bNady4Mc888wwnT57MVdbVq1cZP348bdq0oX79+rRq1Yrx48eTlJSUq74PPviAZ555hkaNGuUKUAC//fZbnre+wsPDqVOnDhEREfmey59//slTTz1F06ZNadGiBa+//jrR0dGW/fl1q996KyFn//z58y1fz5s3j06dOrFr1y5Ll/rjjz/O/v37LWXk101+a1d/p06duHbtGuvXr79rl/q2bdvo168foaGhtG7dmkmTJpGSkmJpT85tmWeeeeaOXfhxcXG8+eabtGrVitDQUAYPHpyr90Gv17NgwQJ69OhBw4YN6datG4sXL8ZsNudbJsD+/fst/0+DBg2iUaNGdOvWjZUrV1qOuXr1KnXq1GHdunW5XpvfbYcFCxbw4IMPEhoayksvvcSVK1fyrf+/t1Bu3rzJtGnTaNu2LSEhIfTv35/ffvvNsl+n0zFnzhy6detGgwYNaNKkCc8++yynTp0Csq/p/PnzgdvfD7feZoqLi2PixIm0b9+eRo0a8dhjj7Fz585cbatTpw4rVqzg7bffpnnz5oSGhvLyyy+TkJBgOeby5cu88MILtGjRgsaNG/PEE0/w+++/53u+ffv25cUXX8y1rUuXLnTo0CHXtpdeeonhw4ffdo3yel/n+O233+jduzcNGzake/fud+1V2bBhA3Fxcbz11lu5ggyAWq1m3LhxDBo0iJs3b+bat27dOrp3707Dhg3p3bt3rvP978/PhAkTGDp0KGvXrqV79+40aNCARx99lN27d+cq8+DBgwwfPpxmzZrRoEEDOnXqxLx58+76/hUlR8KMsJl33nkHb29vpk2bRlZWFpMnTyYkJMTyS/HGjRsMHDiQEydO8O677zJnzhzMZjODBg0iMjISgMzMTIYMGUJkZCTvvfceS5cuZciQIWzdupVPPvkkV30rVqygYcOGLFy4kMceeyzXvrZt2+Lv78/GjRtzbd+wYQPVqlWjadOmeZ7Dhg0bGDZsGEFBQXz88cdMnDiRw4cP88QTT5CYmFjga/Hdd98B8Nhjj1m+zrkGb775Jk899RSffvopjo6ODB8+3PJhWBDz58/Hz8+P9u3b37FLfeHChbz22muEhIQwd+5cRo0axfbt23n66afR6XQMGDCASZMmATBp0iTLh/B/paen8+STT7J//37eeOMN5s+fj4ODA8OGDePixYsoisILL7zAkiVLGDBgAIsWLaJHjx7873//47333ivQOb366qvUq1fPEkSmTJmSK9AUVEREBFu3bmXSpEm8//77nD59miFDhtz2gZgXk8nEsGHD2Lx5M88//zwLFy6kRo0ajBo1yjJ+Y/z48axdu5aRI0eybNkyJk6cyLlz53j99ddRFIUBAwZY3ov53VpKSEjgscceIzw8nFdffZV58+ZRsWJFRo0axaZNm3Id+8knn2A2m/n4448ZP348u3bt4oMPPgDAbDbz/PPPk5mZycyZM1m4cCGenp68+OKLXLp0Kc9zbN++PQcOHMBkMgHZQfHKlStER0dbQp/BYGDv3r23BZycc4Lb39eQ/R4aOnQon332GYGBgUyYMIHTp0/ne73/+OMPfH19adSoUZ77H3jgAd58802qVatm2RYdHc3ixYt5+eWXmTdvHiqVirFjx97xZ/Pvv/9m6dKljB07lgULFqDRaBgzZowl1J8+fZqhQ4fi6enJJ598wmeffUZYWBjz58/nxx9/zLdcUbLkNpOwGU9PTyZPnszo0aMZNmwYV69eZcOGDWg0GgC+/vprkpOTWbVqFRUrVgSgXbt2PPzww3z66afMnTuXixcvEhgYyEcffUTlypUBaNmyJUePHuXAgQO56qtQoQLjxo2zfB8VFWX5WqPR0LdvX7755hvS09NxcXFBp9Px448/MnLkyDzbbzabmT17Nm3atGHOnDmW7U2aNOHhhx9m6dKljB8/vkDXIue2QmBgYK5bDJmZmUyePJk+ffpYzq1Lly4sXrz4trCWn3r16mFvb4+3t3e+ty9SUlL47LPPePzxxy2BBaB27doMGjSItWvXMmjQIGrWrAlAzZo1872dsH79ektPUN26dYHsa9KnTx8OHjzIpUuX+Ouvv/j444955JFHAGjdujWOjo58+umnDBkyhFq1at3xnLp27WrpXWvbti1xcXEsXLjwtoG0d6PRaFi2bBmBgYEA1KhRgz59+rBhwwYGDx58x9fu3r2bo0ePsmDBArp06QJk//9cuXKFffv20ahRI9LT03nnnXd4+OGHAWjevDk3b95kxowZJCQkEBgYaKk7v/+bL7/8khs3brB9+3bLz0H79u0ZOnQoM2fOpGfPnqjV2X931q5dmw8//NDy2mPHjvHTTz8BkJiYyIULF3jppZdo3749AI0aNWL+/PlkZWXlWXeHDh347LPPOHbsGKGhoezdu5dq1aqRkJDAwYMHqVy5MhEREWRkZNCxY8fbXp/f+xrg/ffft4y5qlKlCl27duXAgQOWXtn/iomJsZx/QZnNZhYsWEBwcDAADg4ODB06lCNHjtC5c+c8X5OWlsa6deuoUqUKAM7OzgwePJh9+/bRvXt3Tp8+zYMPPsisWbMs171169b8+uuv7N+/3/KeFqWL9MwIm+ratSsPP/wwBw8eZNy4cVStWtWyb+/evdStW5eAgACMRiNGoxG1Wk27du3466+/AKhbty4rV66kYsWKXLx4kd9//52lS5dy4cKF235B53yw5qd///5kZGSwY8cOAHbs2EFGRoYlSPxXVFQU8fHx9OzZM9f2KlWqEBoaeluYuhd2dna5ynd0dKRdu3YcPHiwyGXf6siRI2RlZd12LmFhYVSsWLFQ5xIREUGlSpVyXW8nJye2b9/OgAEDOHDgAHZ2dvTo0SPX63r37g3AgQMHUBTF8n+e8+9Wffv2zfV9t27diI+PzxVQC6JJkyaWMAHZ75HKlSsX6PpGRESg1Wpz3bp
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"collab_year = wos_collabs[wos_collabs[\"Country\"]!=\"China\"].copy()\n",
"collab_year = collab_year.merge(wos_country_types, on=\"Country\").merge(wos[[record_col,\"Publication Year\"]],on=record_col).drop_duplicates()\n",
"data = collab_year.groupby([\"Publication Year\",'Country_Type'],as_index=False)[record_col].nunique()\n",
"\n",
"\n",
"g=sns.lineplot(data,y=record_col,x=\"Publication Year\", hue=\"Country_Type\", marker=\"o\")\n",
"g.set(xticks=list(range(2012,2022+1,2)))\n",
"g.legend(title=None)\n",
"g.set_xlabel(None)\n",
"g.set_ylabel(None)\n",
"g.set_title(\"Yearly output of co-publications with China\")"
]
},
{
"cell_type": "markdown",
"id": "122d0260",
"metadata": {},
"source": []
},
{
"cell_type": "code",
"execution_count": 366,
"id": "f19501a9",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Publication Year</th>\n",
" <th>Country</th>\n",
" <th>UT (Unique WOS ID)</th>\n",
" <th>Publication Year_relative_growth</th>\n",
" <th>UT (Unique WOS ID)_relative_growth</th>\n",
" <th>UT (Unique WOS ID)_cumsum</th>\n",
" <th>Country_Type</th>\n",
" <th>Eurovoc_Class</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>2011</td>\n",
" <td>Austria</td>\n",
" <td>22.0</td>\n",
" <td>2011</td>\n",
" <td>0.000000</td>\n",
" <td>22.0</td>\n",
" <td>EU</td>\n",
" <td>Western Europe</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>2012</td>\n",
" <td>Austria</td>\n",
" <td>24.0</td>\n",
" <td>2011</td>\n",
" <td>9.090909</td>\n",
" <td>46.0</td>\n",
" <td>EU</td>\n",
" <td>Western Europe</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>2013</td>\n",
" <td>Austria</td>\n",
" <td>26.0</td>\n",
" <td>2011</td>\n",
" <td>18.181818</td>\n",
" <td>72.0</td>\n",
" <td>EU</td>\n",
" <td>Western Europe</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>2014</td>\n",
" <td>Austria</td>\n",
" <td>39.0</td>\n",
" <td>2011</td>\n",
" <td>77.272727</td>\n",
" <td>111.0</td>\n",
" <td>EU</td>\n",
" <td>Western Europe</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>2015</td>\n",
" <td>Austria</td>\n",
" <td>50.0</td>\n",
" <td>2011</td>\n",
" <td>127.272727</td>\n",
" <td>161.0</td>\n",
" <td>EU</td>\n",
" <td>Western Europe</td>\n",
" </tr>\n",
" <tr>\n",
" <th>...</th>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>355</th>\n",
" <td>2018</td>\n",
" <td>United Kingdom</td>\n",
" <td>1837.0</td>\n",
" <td>2011</td>\n",
" <td>406.060606</td>\n",
" <td>6918.0</td>\n",
" <td>Non-EU associate</td>\n",
" <td>Western Europe</td>\n",
" </tr>\n",
" <tr>\n",
" <th>356</th>\n",
" <td>2019</td>\n",
" <td>United Kingdom</td>\n",
" <td>2430.0</td>\n",
" <td>2011</td>\n",
" <td>569.421488</td>\n",
" <td>9348.0</td>\n",
" <td>Non-EU associate</td>\n",
" <td>Western Europe</td>\n",
" </tr>\n",
" <tr>\n",
" <th>357</th>\n",
" <td>2020</td>\n",
" <td>United Kingdom</td>\n",
" <td>3108.0</td>\n",
" <td>2011</td>\n",
" <td>756.198347</td>\n",
" <td>12456.0</td>\n",
" <td>Non-EU associate</td>\n",
" <td>Western Europe</td>\n",
" </tr>\n",
" <tr>\n",
" <th>358</th>\n",
" <td>2021</td>\n",
" <td>United Kingdom</td>\n",
" <td>3718.0</td>\n",
" <td>2011</td>\n",
" <td>924.242424</td>\n",
" <td>16174.0</td>\n",
" <td>Non-EU associate</td>\n",
" <td>Western Europe</td>\n",
" </tr>\n",
" <tr>\n",
" <th>359</th>\n",
" <td>2022</td>\n",
" <td>United Kingdom</td>\n",
" <td>4245.0</td>\n",
" <td>2011</td>\n",
" <td>1069.421488</td>\n",
" <td>20419.0</td>\n",
" <td>Non-EU associate</td>\n",
" <td>Western Europe</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"<p>360 rows × 8 columns</p>\n",
"</div>"
],
"text/plain": [
" Publication Year Country UT (Unique WOS ID) \n",
"0 2011 Austria 22.0 \\\n",
"1 2012 Austria 24.0 \n",
"2 2013 Austria 26.0 \n",
"3 2014 Austria 39.0 \n",
"4 2015 Austria 50.0 \n",
".. ... ... ... \n",
"355 2018 United Kingdom 1837.0 \n",
"356 2019 United Kingdom 2430.0 \n",
"357 2020 United Kingdom 3108.0 \n",
"358 2021 United Kingdom 3718.0 \n",
"359 2022 United Kingdom 4245.0 \n",
"\n",
" Publication Year_relative_growth UT (Unique WOS ID)_relative_growth \n",
"0 2011 0.000000 \\\n",
"1 2011 9.090909 \n",
"2 2011 18.181818 \n",
"3 2011 77.272727 \n",
"4 2011 127.272727 \n",
".. ... ... \n",
"355 2011 406.060606 \n",
"356 2011 569.421488 \n",
"357 2011 756.198347 \n",
"358 2011 924.242424 \n",
"359 2011 1069.421488 \n",
"\n",
" UT (Unique WOS ID)_cumsum Country_Type Eurovoc_Class \n",
"0 22.0 EU Western Europe \n",
"1 46.0 EU Western Europe \n",
"2 72.0 EU Western Europe \n",
"3 111.0 EU Western Europe \n",
"4 161.0 EU Western Europe \n",
".. ... ... ... \n",
"355 6918.0 Non-EU associate Western Europe \n",
"356 9348.0 Non-EU associate Western Europe \n",
"357 12456.0 Non-EU associate Western Europe \n",
"358 16174.0 Non-EU associate Western Europe \n",
"359 20419.0 Non-EU associate Western Europe \n",
"\n",
"[360 rows x 8 columns]"
]
},
"execution_count": 366,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"data = (collab_year.groupby(['Publication Year',\"Country\"])[record_col]\n",
" .nunique(dropna=False).unstack()\n",
" .fillna(0)\n",
" .stack()\n",
" .reset_index()\n",
" .rename(columns={0:record_col}))\n",
"data = data.merge(data[data[record_col]>0].sort_values(by=[\"Publication Year\"], ascending=True).drop_duplicates(subset=\"Country\"),\n",
" on=[\"Country\"], suffixes=[None,\"_relative_growth\"])\n",
"data[record_col+\"_relative_growth\"] = (data[record_col]-data[record_col+\"_relative_growth\"])/data[record_col+\"_relative_growth\"]*100\n",
"data = data.sort_values(by =[\"Country\",\"Publication Year\"], ascending=[True,True])\n",
"data[record_col+\"_cumsum\"] = (data.groupby('Country',as_index=False)[record_col].cumsum())\n",
"data = data.merge(wos_country_types, on='Country')\n",
"data"
]
},
{
"cell_type": "code",
"execution_count": 367,
"id": "b9585045",
"metadata": {},
"outputs": [],
"source": [
"# data[\"ISO3\"] = cc.pandas_convert(series=data[\"Country\"], to='ISO3')\n",
"# fig = px.choropleth(data, locations=\"ISO3\", color=record_col, hover_name=\"Country\",\n",
"# animation_frame='Publication Year', scope=\"europe\", template='plotly', range_color=[data[record_col].min(),data[record_col].max()])\n",
"# fig.show()"
]
},
{
"cell_type": "code",
"execution_count": 368,
"id": "952bdbfe",
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.plotly.v1+json": {
"config": {
"plotlyServerURL": "https://plot.ly"
},
"data": [
{
"coloraxis": "coloraxis",
"geo": "geo",
"hovertemplate": "<b>%{hovertext}</b><br><br>Publication Year=2011<br>ISO3=%{location}<br>UT (Unique WOS ID)_relative_growth=%{z}<extra></extra>",
"hovertext": [
"Austria",
"Belgium",
"Bulgaria",
"Croatia",
"Cyprus",
"Czech Republic",
"Denmark",
"Estonia",
"Finland",
"France",
"Germany",
"Greece",
"Hungary",
"Ireland",
"Italy",
"Latvia",
"Lithuania",
"Luxembourg",
"Malta",
"Netherlands",
"Norway",
"Poland",
"Portugal",
"Romania",
"Slovakia",
"Slovenia",
"Spain",
"Sweden",
"Switzerland",
"United Kingdom"
],
"locations": [
"AUT",
"BEL",
"BGR",
"HRV",
"CYP",
"CZE",
"DNK",
"EST",
"FIN",
"FRA",
"DEU",
"GRC",
"HUN",
"IRL",
"ITA",
"LVA",
"LTU",
"LUX",
"MLT",
"NLD",
"NOR",
"POL",
"PRT",
"ROU",
"SVK",
"SVN",
"ESP",
"SWE",
"CHE",
"GBR"
],
"name": "",
"type": "choropleth",
"z": [
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
-100,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0
]
}
],
"frames": [
{
"data": [
{
"coloraxis": "coloraxis",
"geo": "geo",
"hovertemplate": "<b>%{hovertext}</b><br><br>Publication Year=2011<br>ISO3=%{location}<br>UT (Unique WOS ID)_relative_growth=%{z}<extra></extra>",
"hovertext": [
"Austria",
"Belgium",
"Bulgaria",
"Croatia",
"Cyprus",
"Czech Republic",
"Denmark",
"Estonia",
"Finland",
"France",
"Germany",
"Greece",
"Hungary",
"Ireland",
"Italy",
"Latvia",
"Lithuania",
"Luxembourg",
"Malta",
"Netherlands",
"Norway",
"Poland",
"Portugal",
"Romania",
"Slovakia",
"Slovenia",
"Spain",
"Sweden",
"Switzerland",
"United Kingdom"
],
"locations": [
"AUT",
"BEL",
"BGR",
"HRV",
"CYP",
"CZE",
"DNK",
"EST",
"FIN",
"FRA",
"DEU",
"GRC",
"HUN",
"IRL",
"ITA",
"LVA",
"LTU",
"LUX",
"MLT",
"NLD",
"NOR",
"POL",
"PRT",
"ROU",
"SVK",
"SVN",
"ESP",
"SWE",
"CHE",
"GBR"
],
"name": "",
"type": "choropleth",
"z": [
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
-100,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0
]
}
],
"name": "2011"
},
{
"data": [
{
"coloraxis": "coloraxis",
"geo": "geo",
"hovertemplate": "<b>%{hovertext}</b><br><br>Publication Year=2012<br>ISO3=%{location}<br>UT (Unique WOS ID)_relative_growth=%{z}<extra></extra>",
"hovertext": [
"Austria",
"Belgium",
"Bulgaria",
"Croatia",
"Cyprus",
"Czech Republic",
"Denmark",
"Estonia",
"Finland",
"France",
"Germany",
"Greece",
"Hungary",
"Ireland",
"Italy",
"Latvia",
"Lithuania",
"Luxembourg",
"Malta",
"Netherlands",
"Norway",
"Poland",
"Portugal",
"Romania",
"Slovakia",
"Slovenia",
"Spain",
"Sweden",
"Switzerland",
"United Kingdom"
],
"locations": [
"AUT",
"BEL",
"BGR",
"HRV",
"CYP",
"CZE",
"DNK",
"EST",
"FIN",
"FRA",
"DEU",
"GRC",
"HUN",
"IRL",
"ITA",
"LVA",
"LTU",
"LUX",
"MLT",
"NLD",
"NOR",
"POL",
"PRT",
"ROU",
"SVK",
"SVN",
"ESP",
"SWE",
"CHE",
"GBR"
],
"name": "",
"type": "choropleth",
"z": [
9.090909090909092,
11.76470588235294,
25,
100,
-50,
15.384615384615385,
-5.714285714285714,
0,
12.903225806451612,
11.11111111111111,
39.83739837398374,
20,
0,
23.076923076923077,
37.254901960784316,
-100,
100,
50,
-100,
-11.11111111111111,
40,
82.35294117647058,
43.75,
114.28571428571428,
-33.33333333333333,
0,
-2,
47.05882352941176,
35.13513513513514,
14.87603305785124
]
}
],
"name": "2012"
},
{
"data": [
{
"coloraxis": "coloraxis",
"geo": "geo",
"hovertemplate": "<b>%{hovertext}</b><br><br>Publication Year=2013<br>ISO3=%{location}<br>UT (Unique WOS ID)_relative_growth=%{z}<extra></extra>",
"hovertext": [
"Austria",
"Belgium",
"Bulgaria",
"Croatia",
"Cyprus",
"Czech Republic",
"Denmark",
"Estonia",
"Finland",
"France",
"Germany",
"Greece",
"Hungary",
"Ireland",
"Italy",
"Latvia",
"Lithuania",
"Luxembourg",
"Malta",
"Netherlands",
"Norway",
"Poland",
"Portugal",
"Romania",
"Slovakia",
"Slovenia",
"Spain",
"Sweden",
"Switzerland",
"United Kingdom"
],
"locations": [
"AUT",
"BEL",
"BGR",
"HRV",
"CYP",
"CZE",
"DNK",
"EST",
"FIN",
"FRA",
"DEU",
"GRC",
"HUN",
"IRL",
"ITA",
"LVA",
"LTU",
"LUX",
"MLT",
"NLD",
"NOR",
"POL",
"PRT",
"ROU",
"SVK",
"SVN",
"ESP",
"SWE",
"CHE",
"GBR"
],
"name": "",
"type": "choropleth",
"z": [
18.181818181818183,
17.647058823529413,
100,
500,
150,
23.076923076923077,
14.285714285714285,
133.33333333333331,
41.935483870967744,
48.717948717948715,
56.09756097560976,
26.666666666666668,
90.9090909090909,
69.23076923076923,
64.70588235294117,
0,
900,
50,
-100,
6.944444444444445,
100,
117.64705882352942,
118.75,
85.71428571428571,
-33.33333333333333,
42.857142857142854,
38,
73.52941176470588,
45.94594594594595,
46.28099173553719
]
}
],
"name": "2013"
},
{
"data": [
{
"coloraxis": "coloraxis",
"geo": "geo",
"hovertemplate": "<b>%{hovertext}</b><br><br>Publication Year=2014<br>ISO3=%{location}<br>UT (Unique WOS ID)_relative_growth=%{z}<extra></extra>",
"hovertext": [
"Austria",
"Belgium",
"Bulgaria",
"Croatia",
"Cyprus",
"Czech Republic",
"Denmark",
"Estonia",
"Finland",
"France",
"Germany",
"Greece",
"Hungary",
"Ireland",
"Italy",
"Latvia",
"Lithuania",
"Luxembourg",
"Malta",
"Netherlands",
"Norway",
"Poland",
"Portugal",
"Romania",
"Slovakia",
"Slovenia",
"Spain",
"Sweden",
"Switzerland",
"United Kingdom"
],
"locations": [
"AUT",
"BEL",
"BGR",
"HRV",
"CYP",
"CZE",
"DNK",
"EST",
"FIN",
"FRA",
"DEU",
"GRC",
"HUN",
"IRL",
"ITA",
"LVA",
"LTU",
"LUX",
"MLT",
"NLD",
"NOR",
"POL",
"PRT",
"ROU",
"SVK",
"SVN",
"ESP",
"SWE",
"CHE",
"GBR"
],
"name": "",
"type": "choropleth",
"z": [
77.27272727272727,
91.17647058823529,
125,
700,
150,
61.53846153846154,
68.57142857142857,
233.33333333333334,
164.51612903225808,
97.43589743589743,
121.95121951219512,
113.33333333333333,
45.45454545454545,
138.46153846153845,
127.45098039215685,
-100,
300,
-50,
-100,
43.05555555555556,
153.33333333333334,
235.29411764705884,
156.25,
128.57142857142858,
11.11111111111111,
71.42857142857143,
124,
144.11764705882354,
100,
81.81818181818183
]
}
],
"name": "2014"
},
{
"data": [
{
"coloraxis": "coloraxis",
"geo": "geo",
"hovertemplate": "<b>%{hovertext}</b><br><br>Publication Year=2015<br>ISO3=%{location}<br>UT (Unique WOS ID)_relative_growth=%{z}<extra></extra>",
"hovertext": [
"Austria",
"Belgium",
"Bulgaria",
"Croatia",
"Cyprus",
"Czech Republic",
"Denmark",
"Estonia",
"Finland",
"France",
"Germany",
"Greece",
"Hungary",
"Ireland",
"Italy",
"Latvia",
"Lithuania",
"Luxembourg",
"Malta",
"Netherlands",
"Norway",
"Poland",
"Portugal",
"Romania",
"Slovakia",
"Slovenia",
"Spain",
"Sweden",
"Switzerland",
"United Kingdom"
],
"locations": [
"AUT",
"BEL",
"BGR",
"HRV",
"CYP",
"CZE",
"DNK",
"EST",
"FIN",
"FRA",
"DEU",
"GRC",
"HUN",
"IRL",
"ITA",
"LVA",
"LTU",
"LUX",
"MLT",
"NLD",
"NOR",
"POL",
"PRT",
"ROU",
"SVK",
"SVN",
"ESP",
"SWE",
"CHE",
"GBR"
],
"name": "",
"type": "choropleth",
"z": [
127.27272727272727,
108.8235294117647,
75,
900,
150,
53.84615384615385,
94.28571428571428,
300,
222.5806451612903,
129.9145299145299,
152.03252032520325,
133.33333333333331,
81.81818181818183,
107.6923076923077,
249.01960784313727,
0,
300,
300,
0,
93.05555555555556,
123.33333333333334,
329.4117647058823,
181.25,
257.14285714285717,
33.33333333333333,
142.85714285714286,
176,
232.3529411764706,
100,
115.15151515151516
]
}
],
"name": "2015"
},
{
"data": [
{
"coloraxis": "coloraxis",
"geo": "geo",
"hovertemplate": "<b>%{hovertext}</b><br><br>Publication Year=2016<br>ISO3=%{location}<br>UT (Unique WOS ID)_relative_growth=%{z}<extra></extra>",
"hovertext": [
"Austria",
"Belgium",
"Bulgaria",
"Croatia",
"Cyprus",
"Czech Republic",
"Denmark",
"Estonia",
"Finland",
"France",
"Germany",
"Greece",
"Hungary",
"Ireland",
"Italy",
"Latvia",
"Lithuania",
"Luxembourg",
"Malta",
"Netherlands",
"Norway",
"Poland",
"Portugal",
"Romania",
"Slovakia",
"Slovenia",
"Spain",
"Sweden",
"Switzerland",
"United Kingdom"
],
"locations": [
"AUT",
"BEL",
"BGR",
"HRV",
"CYP",
"CZE",
"DNK",
"EST",
"FIN",
"FRA",
"DEU",
"GRC",
"HUN",
"IRL",
"ITA",
"LVA",
"LTU",
"LUX",
"MLT",
"NLD",
"NOR",
"POL",
"PRT",
"ROU",
"SVK",
"SVN",
"ESP",
"SWE",
"CHE",
"GBR"
],
"name": "",
"type": "choropleth",
"z": [
159.0909090909091,
138.23529411764704,
375,
600,
150,
176.9230769230769,
111.42857142857143,
233.33333333333334,
303.2258064516129,
177.77777777777777,
196.7479674796748,
233.33333333333334,
245.45454545454547,
246.15384615384616,
266.66666666666663,
700,
1200,
350,
0,
130.55555555555557,
193.33333333333334,
382.3529411764706,
262.5,
271.42857142857144,
144.44444444444443,
285.7142857142857,
270,
400,
156.75675675675674,
169.6969696969697
]
}
],
"name": "2016"
},
{
"data": [
{
"coloraxis": "coloraxis",
"geo": "geo",
"hovertemplate": "<b>%{hovertext}</b><br><br>Publication Year=2017<br>ISO3=%{location}<br>UT (Unique WOS ID)_relative_growth=%{z}<extra></extra>",
"hovertext": [
"Austria",
"Belgium",
"Bulgaria",
"Croatia",
"Cyprus",
"Czech Republic",
"Denmark",
"Estonia",
"Finland",
"France",
"Germany",
"Greece",
"Hungary",
"Ireland",
"Italy",
"Latvia",
"Lithuania",
"Luxembourg",
"Malta",
"Netherlands",
"Norway",
"Poland",
"Portugal",
"Romania",
"Slovakia",
"Slovenia",
"Spain",
"Sweden",
"Switzerland",
"United Kingdom"
],
"locations": [
"AUT",
"BEL",
"BGR",
"HRV",
"CYP",
"CZE",
"DNK",
"EST",
"FIN",
"FRA",
"DEU",
"GRC",
"HUN",
"IRL",
"ITA",
"LVA",
"LTU",
"LUX",
"MLT",
"NLD",
"NOR",
"POL",
"PRT",
"ROU",
"SVK",
"SVN",
"ESP",
"SWE",
"CHE",
"GBR"
],
"name": "",
"type": "choropleth",
"z": [
227.27272727272728,
164.70588235294116,
425,
900,
300,
184.6153846153846,
188.57142857142856,
400,
306.4516129032258,
197.43589743589746,
270.7317073170732,
213.33333333333334,
209.0909090909091,
407.6923076923077,
384.3137254901961,
900,
1100,
550,
-100,
205.55555555555554,
246.66666666666669,
476.4705882352941,
393.75,
428.57142857142856,
100,
214.28571428571428,
364,
585.2941176470588,
318.9189189189189,
271.900826446281
]
}
],
"name": "2017"
},
{
"data": [
{
"coloraxis": "coloraxis",
"geo": "geo",
"hovertemplate": "<b>%{hovertext}</b><br><br>Publication Year=2018<br>ISO3=%{location}<br>UT (Unique WOS ID)_relative_growth=%{z}<extra></extra>",
"hovertext": [
"Austria",
"Belgium",
"Bulgaria",
"Croatia",
"Cyprus",
"Czech Republic",
"Denmark",
"Estonia",
"Finland",
"France",
"Germany",
"Greece",
"Hungary",
"Ireland",
"Italy",
"Latvia",
"Lithuania",
"Luxembourg",
"Malta",
"Netherlands",
"Norway",
"Poland",
"Portugal",
"Romania",
"Slovakia",
"Slovenia",
"Spain",
"Sweden",
"Switzerland",
"United Kingdom"
],
"locations": [
"AUT",
"BEL",
"BGR",
"HRV",
"CYP",
"CZE",
"DNK",
"EST",
"FIN",
"FRA",
"DEU",
"GRC",
"HUN",
"IRL",
"ITA",
"LVA",
"LTU",
"LUX",
"MLT",
"NLD",
"NOR",
"POL",
"PRT",
"ROU",
"SVK",
"SVN",
"ESP",
"SWE",
"CHE",
"GBR"
],
"name": "",
"type": "choropleth",
"z": [
304.54545454545456,
291.1764705882353,
350,
1800,
250,
330.7692307692308,
457.1428571428571,
400,
538.7096774193548,
319.6581196581197,
391.0569105691057,
440.00000000000006,
327.2727272727273,
453.8461538461538,
537.2549019607843,
1400,
2200,
650,
-100,
312.5,
346.6666666666667,
547.0588235294118,
643.75,
714.2857142857143,
200,
571.4285714285714,
446,
582.3529411764706,
427.02702702702703,
406.06060606060606
]
}
],
"name": "2018"
},
{
"data": [
{
"coloraxis": "coloraxis",
"geo": "geo",
"hovertemplate": "<b>%{hovertext}</b><br><br>Publication Year=2019<br>ISO3=%{location}<br>UT (Unique WOS ID)_relative_growth=%{z}<extra></extra>",
"hovertext": [
"Austria",
"Belgium",
"Bulgaria",
"Croatia",
"Cyprus",
"Czech Republic",
"Denmark",
"Estonia",
"Finland",
"France",
"Germany",
"Greece",
"Hungary",
"Ireland",
"Italy",
"Latvia",
"Lithuania",
"Luxembourg",
"Malta",
"Netherlands",
"Norway",
"Poland",
"Portugal",
"Romania",
"Slovakia",
"Slovenia",
"Spain",
"Sweden",
"Switzerland",
"United Kingdom"
],
"locations": [
"AUT",
"BEL",
"BGR",
"HRV",
"CYP",
"CZE",
"DNK",
"EST",
"FIN",
"FRA",
"DEU",
"GRC",
"HUN",
"IRL",
"ITA",
"LVA",
"LTU",
"LUX",
"MLT",
"NLD",
"NOR",
"POL",
"PRT",
"ROU",
"SVK",
"SVN",
"ESP",
"SWE",
"CHE",
"GBR"
],
"name": "",
"type": "choropleth",
"z": [
527.2727272727273,
426.4705882352941,
150,
2600,
650,
392.30769230769226,
568.5714285714286,
433.3333333333333,
677.4193548387098,
453.8461538461538,
551.2195121951219,
660,
454.54545454545456,
546.1538461538462,
764.7058823529412,
900,
3700,
800,
500,
466.6666666666667,
640,
711.7647058823529,
750,
814.2857142857142,
200,
671.4285714285714,
612,
1032.3529411764707,
529.7297297297297,
569.4214876033059
]
}
],
"name": "2019"
},
{
"data": [
{
"coloraxis": "coloraxis",
"geo": "geo",
"hovertemplate": "<b>%{hovertext}</b><br><br>Publication Year=2020<br>ISO3=%{location}<br>UT (Unique WOS ID)_relative_growth=%{z}<extra></extra>",
"hovertext": [
"Austria",
"Belgium",
"Bulgaria",
"Croatia",
"Cyprus",
"Czech Republic",
"Denmark",
"Estonia",
"Finland",
"France",
"Germany",
"Greece",
"Hungary",
"Ireland",
"Italy",
"Latvia",
"Lithuania",
"Luxembourg",
"Malta",
"Netherlands",
"Norway",
"Poland",
"Portugal",
"Romania",
"Slovakia",
"Slovenia",
"Spain",
"Sweden",
"Switzerland",
"United Kingdom"
],
"locations": [
"AUT",
"BEL",
"BGR",
"HRV",
"CYP",
"CZE",
"DNK",
"EST",
"FIN",
"FRA",
"DEU",
"GRC",
"HUN",
"IRL",
"ITA",
"LVA",
"LTU",
"LUX",
"MLT",
"NLD",
"NOR",
"POL",
"PRT",
"ROU",
"SVK",
"SVN",
"ESP",
"SWE",
"CHE",
"GBR"
],
"name": "",
"type": "choropleth",
"z": [
522.7272727272727,
526.4705882352941,
525,
2800,
1300,
523.0769230769231,
600,
1166.6666666666665,
725.8064516129032,
490.59829059829065,
637.3983739837398,
713.3333333333334,
454.54545454545456,
792.3076923076924,
1019.6078431372548,
800,
3500,
1000,
100,
552.7777777777777,
743.3333333333334,
964.7058823529411,
818.75,
685.7142857142857,
277.77777777777777,
342.85714285714283,
672,
955.8823529411765,
610.8108108108108,
756.198347107438
]
}
],
"name": "2020"
},
{
"data": [
{
"coloraxis": "coloraxis",
"geo": "geo",
"hovertemplate": "<b>%{hovertext}</b><br><br>Publication Year=2021<br>ISO3=%{location}<br>UT (Unique WOS ID)_relative_growth=%{z}<extra></extra>",
"hovertext": [
"Austria",
"Belgium",
"Bulgaria",
"Croatia",
"Cyprus",
"Czech Republic",
"Denmark",
"Estonia",
"Finland",
"France",
"Germany",
"Greece",
"Hungary",
"Ireland",
"Italy",
"Latvia",
"Lithuania",
"Luxembourg",
"Malta",
"Netherlands",
"Norway",
"Poland",
"Portugal",
"Romania",
"Slovakia",
"Slovenia",
"Spain",
"Sweden",
"Switzerland",
"United Kingdom"
],
"locations": [
"AUT",
"BEL",
"BGR",
"HRV",
"CYP",
"CZE",
"DNK",
"EST",
"FIN",
"FRA",
"DEU",
"GRC",
"HUN",
"IRL",
"ITA",
"LVA",
"LTU",
"LUX",
"MLT",
"NLD",
"NOR",
"POL",
"PRT",
"ROU",
"SVK",
"SVN",
"ESP",
"SWE",
"CHE",
"GBR"
],
"name": "",
"type": "choropleth",
"z": [
740.9090909090909,
611.7647058823529,
700,
3200,
1700,
615.3846153846155,
737.1428571428571,
1400,
832.258064516129,
589.7435897435898,
883.739837398374,
826.6666666666667,
654.5454545454546,
1184.6153846153848,
1156.862745098039,
1200,
3700,
1650,
600,
634.7222222222223,
913.3333333333333,
1523.5294117647059,
1175,
585.7142857142857,
300,
585.7142857142857,
846.0000000000001,
1158.8235294117646,
843.2432432432431,
924.2424242424242
]
}
],
"name": "2021"
},
{
"data": [
{
"coloraxis": "coloraxis",
"geo": "geo",
"hovertemplate": "<b>%{hovertext}</b><br><br>Publication Year=2022<br>ISO3=%{location}<br>UT (Unique WOS ID)_relative_growth=%{z}<extra></extra>",
"hovertext": [
"Austria",
"Belgium",
"Bulgaria",
"Croatia",
"Cyprus",
"Czech Republic",
"Denmark",
"Estonia",
"Finland",
"France",
"Germany",
"Greece",
"Hungary",
"Ireland",
"Italy",
"Latvia",
"Lithuania",
"Luxembourg",
"Malta",
"Netherlands",
"Norway",
"Poland",
"Portugal",
"Romania",
"Slovakia",
"Slovenia",
"Spain",
"Sweden",
"Switzerland",
"United Kingdom"
],
"locations": [
"AUT",
"BEL",
"BGR",
"HRV",
"CYP",
"CZE",
"DNK",
"EST",
"FIN",
"FRA",
"DEU",
"GRC",
"HUN",
"IRL",
"ITA",
"LVA",
"LTU",
"LUX",
"MLT",
"NLD",
"NOR",
"POL",
"PRT",
"ROU",
"SVK",
"SVN",
"ESP",
"SWE",
"CHE",
"GBR"
],
"name": "",
"type": "choropleth",
"z": [
831.8181818181819,
758.8235294117646,
375,
3400,
2050,
846.1538461538462,
880.0000000000001,
1200,
1125.8064516129032,
633.3333333333333,
1026.8292682926829,
1106.6666666666667,
718.1818181818181,
1338.4615384615386,
1490.1960784313726,
1700,
3700,
2450,
900,
809.7222222222222,
936.6666666666667,
1976.4705882352941,
1225,
785.7142857142857,
400,
471.42857142857144,
1180,
1400,
1108.1081081081081,
1069.4214876033059
]
}
],
"name": "2022"
}
],
"layout": {
"coloraxis": {
"cmax": 3700,
"cmin": -100,
"colorbar": {
"title": {
"text": "UT (Unique WOS ID)_relative_growth"
}
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
]
},
"geo": {
"center": {},
"domain": {
"x": [
0,
1
],
"y": [
0,
1
]
},
"scope": "europe"
},
"legend": {
"tracegroupgap": 0
},
"margin": {
"t": 60
},
"sliders": [
{
"active": 0,
"currentvalue": {
"prefix": "Publication Year="
},
"len": 0.9,
"pad": {
"b": 10,
"t": 60
},
"steps": [
{
"args": [
[
"2011"
],
{
"frame": {
"duration": 0,
"redraw": true
},
"fromcurrent": true,
"mode": "immediate",
"transition": {
"duration": 0,
"easing": "linear"
}
}
],
"label": "2011",
"method": "animate"
},
{
"args": [
[
"2012"
],
{
"frame": {
"duration": 0,
"redraw": true
},
"fromcurrent": true,
"mode": "immediate",
"transition": {
"duration": 0,
"easing": "linear"
}
}
],
"label": "2012",
"method": "animate"
},
{
"args": [
[
"2013"
],
{
"frame": {
"duration": 0,
"redraw": true
},
"fromcurrent": true,
"mode": "immediate",
"transition": {
"duration": 0,
"easing": "linear"
}
}
],
"label": "2013",
"method": "animate"
},
{
"args": [
[
"2014"
],
{
"frame": {
"duration": 0,
"redraw": true
},
"fromcurrent": true,
"mode": "immediate",
"transition": {
"duration": 0,
"easing": "linear"
}
}
],
"label": "2014",
"method": "animate"
},
{
"args": [
[
"2015"
],
{
"frame": {
"duration": 0,
"redraw": true
},
"fromcurrent": true,
"mode": "immediate",
"transition": {
"duration": 0,
"easing": "linear"
}
}
],
"label": "2015",
"method": "animate"
},
{
"args": [
[
"2016"
],
{
"frame": {
"duration": 0,
"redraw": true
},
"fromcurrent": true,
"mode": "immediate",
"transition": {
"duration": 0,
"easing": "linear"
}
}
],
"label": "2016",
"method": "animate"
},
{
"args": [
[
"2017"
],
{
"frame": {
"duration": 0,
"redraw": true
},
"fromcurrent": true,
"mode": "immediate",
"transition": {
"duration": 0,
"easing": "linear"
}
}
],
"label": "2017",
"method": "animate"
},
{
"args": [
[
"2018"
],
{
"frame": {
"duration": 0,
"redraw": true
},
"fromcurrent": true,
"mode": "immediate",
"transition": {
"duration": 0,
"easing": "linear"
}
}
],
"label": "2018",
"method": "animate"
},
{
"args": [
[
"2019"
],
{
"frame": {
"duration": 0,
"redraw": true
},
"fromcurrent": true,
"mode": "immediate",
"transition": {
"duration": 0,
"easing": "linear"
}
}
],
"label": "2019",
"method": "animate"
},
{
"args": [
[
"2020"
],
{
"frame": {
"duration": 0,
"redraw": true
},
"fromcurrent": true,
"mode": "immediate",
"transition": {
"duration": 0,
"easing": "linear"
}
}
],
"label": "2020",
"method": "animate"
},
{
"args": [
[
"2021"
],
{
"frame": {
"duration": 0,
"redraw": true
},
"fromcurrent": true,
"mode": "immediate",
"transition": {
"duration": 0,
"easing": "linear"
}
}
],
"label": "2021",
"method": "animate"
},
{
"args": [
[
"2022"
],
{
"frame": {
"duration": 0,
"redraw": true
},
"fromcurrent": true,
"mode": "immediate",
"transition": {
"duration": 0,
"easing": "linear"
}
}
],
"label": "2022",
"method": "animate"
}
],
"x": 0.1,
"xanchor": "left",
"y": 0,
"yanchor": "top"
}
],
"template": {
"data": {
"bar": [
{
"error_x": {
"color": "#2a3f5f"
},
"error_y": {
"color": "#2a3f5f"
},
"marker": {
"line": {
"color": "#E5ECF6",
"width": 0.5
},
"pattern": {
"fillmode": "overlay",
"size": 10,
"solidity": 0.2
}
},
"type": "bar"
}
],
"barpolar": [
{
"marker": {
"line": {
"color": "#E5ECF6",
"width": 0.5
},
"pattern": {
"fillmode": "overlay",
"size": 10,
"solidity": 0.2
}
},
"type": "barpolar"
}
],
"carpet": [
{
"aaxis": {
"endlinecolor": "#2a3f5f",
"gridcolor": "white",
"linecolor": "white",
"minorgridcolor": "white",
"startlinecolor": "#2a3f5f"
},
"baxis": {
"endlinecolor": "#2a3f5f",
"gridcolor": "white",
"linecolor": "white",
"minorgridcolor": "white",
"startlinecolor": "#2a3f5f"
},
"type": "carpet"
}
],
"choropleth": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "choropleth"
}
],
"contour": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "contour"
}
],
"contourcarpet": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "contourcarpet"
}
],
"heatmap": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "heatmap"
}
],
"heatmapgl": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "heatmapgl"
}
],
"histogram": [
{
"marker": {
"pattern": {
"fillmode": "overlay",
"size": 10,
"solidity": 0.2
}
},
"type": "histogram"
}
],
"histogram2d": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "histogram2d"
}
],
"histogram2dcontour": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "histogram2dcontour"
}
],
"mesh3d": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "mesh3d"
}
],
"parcoords": [
{
"line": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "parcoords"
}
],
"pie": [
{
"automargin": true,
"type": "pie"
}
],
"scatter": [
{
"fillpattern": {
"fillmode": "overlay",
"size": 10,
"solidity": 0.2
},
"type": "scatter"
}
],
"scatter3d": [
{
"line": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatter3d"
}
],
"scattercarpet": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattercarpet"
}
],
"scattergeo": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattergeo"
}
],
"scattergl": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattergl"
}
],
"scattermapbox": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattermapbox"
}
],
"scatterpolar": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterpolar"
}
],
"scatterpolargl": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterpolargl"
}
],
"scatterternary": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterternary"
}
],
"surface": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "surface"
}
],
"table": [
{
"cells": {
"fill": {
"color": "#EBF0F8"
},
"line": {
"color": "white"
}
},
"header": {
"fill": {
"color": "#C8D4E3"
},
"line": {
"color": "white"
}
},
"type": "table"
}
]
},
"layout": {
"annotationdefaults": {
"arrowcolor": "#2a3f5f",
"arrowhead": 0,
"arrowwidth": 1
},
"autotypenumbers": "strict",
"coloraxis": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"colorscale": {
"diverging": [
[
0,
"#8e0152"
],
[
0.1,
"#c51b7d"
],
[
0.2,
"#de77ae"
],
[
0.3,
"#f1b6da"
],
[
0.4,
"#fde0ef"
],
[
0.5,
"#f7f7f7"
],
[
0.6,
"#e6f5d0"
],
[
0.7,
"#b8e186"
],
[
0.8,
"#7fbc41"
],
[
0.9,
"#4d9221"
],
[
1,
"#276419"
]
],
"sequential": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"sequentialminus": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
]
},
"colorway": [
"#636efa",
"#EF553B",
"#00cc96",
"#ab63fa",
"#FFA15A",
"#19d3f3",
"#FF6692",
"#B6E880",
"#FF97FF",
"#FECB52"
],
"font": {
"color": "#2a3f5f"
},
"geo": {
"bgcolor": "white",
"lakecolor": "white",
"landcolor": "#E5ECF6",
"showlakes": true,
"showland": true,
"subunitcolor": "white"
},
"hoverlabel": {
"align": "left"
},
"hovermode": "closest",
"mapbox": {
"style": "light"
},
"paper_bgcolor": "white",
"plot_bgcolor": "#E5ECF6",
"polar": {
"angularaxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
},
"bgcolor": "#E5ECF6",
"radialaxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
}
},
"scene": {
"xaxis": {
"backgroundcolor": "#E5ECF6",
"gridcolor": "white",
"gridwidth": 2,
"linecolor": "white",
"showbackground": true,
"ticks": "",
"zerolinecolor": "white"
},
"yaxis": {
"backgroundcolor": "#E5ECF6",
"gridcolor": "white",
"gridwidth": 2,
"linecolor": "white",
"showbackground": true,
"ticks": "",
"zerolinecolor": "white"
},
"zaxis": {
"backgroundcolor": "#E5ECF6",
"gridcolor": "white",
"gridwidth": 2,
"linecolor": "white",
"showbackground": true,
"ticks": "",
"zerolinecolor": "white"
}
},
"shapedefaults": {
"line": {
"color": "#2a3f5f"
}
},
"ternary": {
"aaxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
},
"baxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
},
"bgcolor": "#E5ECF6",
"caxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
}
},
"title": {
"x": 0.05
},
"xaxis": {
"automargin": true,
"gridcolor": "white",
"linecolor": "white",
"ticks": "",
"title": {
"standoff": 15
},
"zerolinecolor": "white",
"zerolinewidth": 2
},
"yaxis": {
"automargin": true,
"gridcolor": "white",
"linecolor": "white",
"ticks": "",
"title": {
"standoff": 15
},
"zerolinecolor": "white",
"zerolinewidth": 2
}
}
},
"updatemenus": [
{
"buttons": [
{
"args": [
null,
{
"frame": {
"duration": 500,
"redraw": true
},
"fromcurrent": true,
"mode": "immediate",
"transition": {
"duration": 500,
"easing": "linear"
}
}
],
"label": "&#9654;",
"method": "animate"
},
{
"args": [
[
null
],
{
"frame": {
"duration": 0,
"redraw": true
},
"fromcurrent": true,
"mode": "immediate",
"transition": {
"duration": 0,
"easing": "linear"
}
}
],
"label": "&#9724;",
"method": "animate"
}
],
"direction": "left",
"pad": {
"r": 10,
"t": 70
},
"showactive": false,
"type": "buttons",
"x": 0.1,
"xanchor": "right",
"y": 0,
"yanchor": "top"
}
]
}
},
"text/html": [
"<div> <div id=\"22246f87-a6e8-4d29-9012-cead3f832695\" class=\"plotly-graph-div\" style=\"height:525px; width:100%;\"></div> <script type=\"text/javascript\"> require([\"plotly\"], function(Plotly) { window.PLOTLYENV=window.PLOTLYENV || {}; if (document.getElementById(\"22246f87-a6e8-4d29-9012-cead3f832695\")) { Plotly.newPlot( \"22246f87-a6e8-4d29-9012-cead3f832695\", [{\"coloraxis\":\"coloraxis\",\"geo\":\"geo\",\"hovertemplate\":\"<b>%{hovertext}</b><br><br>Publication Year=2011<br>ISO3=%{location}<br>UT (Unique WOS ID)_relative_growth=%{z}<extra></extra>\",\"hovertext\":[\"Austria\",\"Belgium\",\"Bulgaria\",\"Croatia\",\"Cyprus\",\"Czech Republic\",\"Denmark\",\"Estonia\",\"Finland\",\"France\",\"Germany\",\"Greece\",\"Hungary\",\"Ireland\",\"Italy\",\"Latvia\",\"Lithuania\",\"Luxembourg\",\"Malta\",\"Netherlands\",\"Norway\",\"Poland\",\"Portugal\",\"Romania\",\"Slovakia\",\"Slovenia\",\"Spain\",\"Sweden\",\"Switzerland\",\"United Kingdom\"],\"locations\":[\"AUT\",\"BEL\",\"BGR\",\"HRV\",\"CYP\",\"CZE\",\"DNK\",\"EST\",\"FIN\",\"FRA\",\"DEU\",\"GRC\",\"HUN\",\"IRL\",\"ITA\",\"LVA\",\"LTU\",\"LUX\",\"MLT\",\"NLD\",\"NOR\",\"POL\",\"PRT\",\"ROU\",\"SVK\",\"SVN\",\"ESP\",\"SWE\",\"CHE\",\"GBR\"],\"name\":\"\",\"z\":[0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,-100.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0],\"type\":\"choropleth\"}], {\"template\":{\"data\":{\"barpolar\":[{\"marker\":{\"line\":{\"color\":\"#E5ECF6\",\"width\":0.5},\"pattern\":{\"fillmode\":\"overlay\",\"size\":10,\"solidity\":0.2}},\"type\":\"barpolar\"}],\"bar\":[{\"error_x\":{\"color\":\"#2a3f5f\"},\"error_y\":{\"color\":\"#2a3f5f\"},\"marker\":{\"line\":{\"color\":\"#E5ECF6\",\"width\":0.5},\"pattern\":{\"fillmode\":\"overlay\",\"size\":10,\"solidity\":0.2}},\"type\":\"bar\"}],\"carpet\":[{\"aaxis\":{\"endlinecolor\":\"#2a3f5f\",\"gridcolor\":\"white\",\"linecolor\":\"white\",\"minorgridcolor\":\"white\",\"startlinecolor\":\"#2a3f5f\"},\"baxis\":{\"endlinecolor\":\"#2a3f5f\",\"gridcolor\":\"white\",\"linecolor\":\"white\",\"minorgridcolor\":\"white\",\"startlinecolor\":\"#2a3f5f\"},\"type\":\"carpet\"}],\"choropleth\":[{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"},\"type\":\"choropleth\"}],\"contourcarpet\":[{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"},\"type\":\"contourcarpet\"}],\"contour\":[{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"},\"colorscale\":[[0.0,\"#0d0887\"],[0.1111111111111111,\"#46039f\"],[0.2222222222222222,\"#7201a8\"],[0.3333333333333333,\"#9c179e\"],[0.4444444444444444,\"#bd3786\"],[0.5555555555555556,\"#d8576b\"],[0.6666666666666666,\"#ed7953\"],[0.7777777777777778,\"#fb9f3a\"],[0.8888888888888888,\"#fdca26\"],[1.0,\"#f0f921\"]],\"type\":\"contour\"}],\"heatmapgl\":[{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"},\"colorscale\":[[0.0,\"#0d0887\"],[0.1111111111111111,\"#46039f\"],[0.2222222222222222,\"#7201a8\"],[0.3333333333333333,\"#9c179e\"],[0.4444444444444444,\"#bd3786\"],[0.5555555555555556,\"#d8576b\"],[0.6666666666666666,\"#ed7953\"],[0.7777777777777778,\"#fb9f3a\"],[0.8888888888888888,\"#fdca26\"],[1.0,\"#f0f921\"]],\"type\":\"heatmapgl\"}],\"heatmap\":[{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"},\"colorscale\":[[0.0,\"#0d0887\"],[0.1111111111111111,\"#46039f\"],[0.2222222222222222,\"#7201a8\"],[0.3333333333333333,\"#9c179e\"],[0.4444444444444444,\"#bd3786\"],[0.5555555555555556,\"#d8576b\"],[0.6666666666666666,\"#ed7953\"],[0.7777777777777778,\"#fb9f3a\"],[0.8888888888888888,\"#fdca26\"],[1.0,\"#f0f921\"]],\"type\":\"heatmap\"}],\"histogram2dcontour\":[{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"},\"colorscale\":[[0.0,\"#0d0887\"],[0.1111111111111111,\"#46039f\"],[0.2222222222222222,\"#7201a8\"],[0.3333333333333333,\"#9c179e\"],[0.4444444444444444,\"#bd3786\"],[0.5555555555555556,\"#d8576b\"],[0.6666666666666666,\"#ed7953\"],[0.7777777777777778,\"#fb9f3a\"],[0.8888
" Plotly.addFrames('22246f87-a6e8-4d29-9012-cead3f832695', [{\"data\":[{\"coloraxis\":\"coloraxis\",\"geo\":\"geo\",\"hovertemplate\":\"<b>%{hovertext}</b><br><br>Publication Year=2011<br>ISO3=%{location}<br>UT (Unique WOS ID)_relative_growth=%{z}<extra></extra>\",\"hovertext\":[\"Austria\",\"Belgium\",\"Bulgaria\",\"Croatia\",\"Cyprus\",\"Czech Republic\",\"Denmark\",\"Estonia\",\"Finland\",\"France\",\"Germany\",\"Greece\",\"Hungary\",\"Ireland\",\"Italy\",\"Latvia\",\"Lithuania\",\"Luxembourg\",\"Malta\",\"Netherlands\",\"Norway\",\"Poland\",\"Portugal\",\"Romania\",\"Slovakia\",\"Slovenia\",\"Spain\",\"Sweden\",\"Switzerland\",\"United Kingdom\"],\"locations\":[\"AUT\",\"BEL\",\"BGR\",\"HRV\",\"CYP\",\"CZE\",\"DNK\",\"EST\",\"FIN\",\"FRA\",\"DEU\",\"GRC\",\"HUN\",\"IRL\",\"ITA\",\"LVA\",\"LTU\",\"LUX\",\"MLT\",\"NLD\",\"NOR\",\"POL\",\"PRT\",\"ROU\",\"SVK\",\"SVN\",\"ESP\",\"SWE\",\"CHE\",\"GBR\"],\"name\":\"\",\"z\":[0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,-100.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0],\"type\":\"choropleth\"}],\"name\":\"2011\"},{\"data\":[{\"coloraxis\":\"coloraxis\",\"geo\":\"geo\",\"hovertemplate\":\"<b>%{hovertext}</b><br><br>Publication Year=2012<br>ISO3=%{location}<br>UT (Unique WOS ID)_relative_growth=%{z}<extra></extra>\",\"hovertext\":[\"Austria\",\"Belgium\",\"Bulgaria\",\"Croatia\",\"Cyprus\",\"Czech Republic\",\"Denmark\",\"Estonia\",\"Finland\",\"France\",\"Germany\",\"Greece\",\"Hungary\",\"Ireland\",\"Italy\",\"Latvia\",\"Lithuania\",\"Luxembourg\",\"Malta\",\"Netherlands\",\"Norway\",\"Poland\",\"Portugal\",\"Romania\",\"Slovakia\",\"Slovenia\",\"Spain\",\"Sweden\",\"Switzerland\",\"United Kingdom\"],\"locations\":[\"AUT\",\"BEL\",\"BGR\",\"HRV\",\"CYP\",\"CZE\",\"DNK\",\"EST\",\"FIN\",\"FRA\",\"DEU\",\"GRC\",\"HUN\",\"IRL\",\"ITA\",\"LVA\",\"LTU\",\"LUX\",\"MLT\",\"NLD\",\"NOR\",\"POL\",\"PRT\",\"ROU\",\"SVK\",\"SVN\",\"ESP\",\"SWE\",\"CHE\",\"GBR\"],\"name\":\"\",\"z\":[9.090909090909092,11.76470588235294,25.0,100.0,-50.0,15.384615384615385,-5.714285714285714,0.0,12.903225806451612,11.11111111111111,39.83739837398374,20.0,0.0,23.076923076923077,37.254901960784316,-100.0,100.0,50.0,-100.0,-11.11111111111111,40.0,82.35294117647058,43.75,114.28571428571428,-33.33333333333333,0.0,-2.0,47.05882352941176,35.13513513513514,14.87603305785124],\"type\":\"choropleth\"}],\"name\":\"2012\"},{\"data\":[{\"coloraxis\":\"coloraxis\",\"geo\":\"geo\",\"hovertemplate\":\"<b>%{hovertext}</b><br><br>Publication Year=2013<br>ISO3=%{location}<br>UT (Unique WOS ID)_relative_growth=%{z}<extra></extra>\",\"hovertext\":[\"Austria\",\"Belgium\",\"Bulgaria\",\"Croatia\",\"Cyprus\",\"Czech Republic\",\"Denmark\",\"Estonia\",\"Finland\",\"France\",\"Germany\",\"Greece\",\"Hungary\",\"Ireland\",\"Italy\",\"Latvia\",\"Lithuania\",\"Luxembourg\",\"Malta\",\"Netherlands\",\"Norway\",\"Poland\",\"Portugal\",\"Romania\",\"Slovakia\",\"Slovenia\",\"Spain\",\"Sweden\",\"Switzerland\",\"United Kingdom\"],\"locations\":[\"AUT\",\"BEL\",\"BGR\",\"HRV\",\"CYP\",\"CZE\",\"DNK\",\"EST\",\"FIN\",\"FRA\",\"DEU\",\"GRC\",\"HUN\",\"IRL\",\"ITA\",\"LVA\",\"LTU\",\"LUX\",\"MLT\",\"NLD\",\"NOR\",\"POL\",\"PRT\",\"ROU\",\"SVK\",\"SVN\",\"ESP\",\"SWE\",\"CHE\",\"GBR\"],\"name\":\"\",\"z\":[18.181818181818183,17.647058823529413,100.0,500.0,150.0,23.076923076923077,14.285714285714285,133.33333333333331,41.935483870967744,48.717948717948715,56.09756097560976,26.666666666666668,90.9090909090909,69.23076923076923,64.70588235294117,0.0,900.0,50.0,-100.0,6.944444444444445,100.0,117.64705882352942,118.75,85.71428571428571,-33.33333333333333,42.857142857142854,38.0,73.52941176470588,45.94594594594595,46.28099173553719],\"type\":\"choropleth\"}],\"name\":\"2013\"},{\"data\":[{\"coloraxis\":\"coloraxis\",\"geo\":\"geo\",\"hovertemplate\":\"<b>%{hovertext}</b><br><br>Publication Year=2014<br>ISO3=%{location}<br>UT (Unique WOS ID)_relative_growth=%{z}<extra></extra>\",\"hovertext\":[\"Austria\",\"Belgium\",\"Bulgaria\",\"Croatia\",\"Cyprus\",\"Czech Republic\",\"Denmark\",\"
" }).then(function(){\n",
" \n",
"var gd = document.getElementById('22246f87-a6e8-4d29-9012-cead3f832695');\n",
"var x = new MutationObserver(function (mutations, observer) {{\n",
" var display = window.getComputedStyle(gd).display;\n",
" if (!display || display === 'none') {{\n",
" console.log([gd, 'removed!']);\n",
" Plotly.purge(gd);\n",
" observer.disconnect();\n",
" }}\n",
"}});\n",
"\n",
"// Listen for the removal of the full notebook cells\n",
"var notebookContainer = gd.closest('#notebook-container');\n",
"if (notebookContainer) {{\n",
" x.observe(notebookContainer, {childList: true});\n",
"}}\n",
"\n",
"// Listen for the clearing of the current output cell\n",
"var outputEl = gd.closest('.output');\n",
"if (outputEl) {{\n",
" x.observe(outputEl, {childList: true});\n",
"}}\n",
"\n",
" }) }; }); </script> </div>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"data[\"ISO3\"] = cc.pandas_convert(series=data[\"Country\"], to='ISO3')\n",
"fig = px.choropleth(data, locations=\"ISO3\", color=record_col+\"_relative_growth\", hover_name=\"Country\",\n",
" animation_frame='Publication Year', scope=\"europe\", template='plotly',\n",
" range_color=[data[record_col+\"_relative_growth\"].min(),data[record_col+\"_relative_growth\"].max()])\n",
"fig.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "119893ec",
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": 369,
"id": "ae3cb8e1",
"metadata": {},
"outputs": [],
"source": [
"# fig = px.line(data.sort_values(ascending=True, by='Publication Year'),y=record_col,x='Publication Year', color=\"Eurovoc_Class\",line_group=\"Country\", markers=True,\n",
"# labels={\n",
"# record_col: 'Number of co-publications',\n",
"# \"Eurovoc_Class\": \"Region\"\n",
"# },\n",
"# title=\"Yearly output of co-publications\", template='plotly',hover_name= \"Country\")\n",
"# fig.update_traces(hovertemplate='<b>%{hovertext}</b><br>%{x}<br>Co-publications: %{y}')\n",
"# # fig.update_layout(hovermode='x unified')\n",
"# fig.add_shape(\n",
"# # Rectangle with reference to the plot\n",
"# type=\"rect\",\n",
"# xref=\"paper\",\n",
"# yref=\"paper\",\n",
"# x0=0,\n",
"# y0=0,\n",
"# x1=1.0,\n",
"# y1=1.0,\n",
"# line=dict(\n",
"# color=\"black\",\n",
"# width=0.5,\n",
"# )\n",
"# )\n",
"# fig.update_yaxes(\n",
"# showgrid=True,\n",
"# ticks=\"outside\")\n",
"# fig.update_xaxes(\n",
"# showgrid=True,\n",
"# ticks=\"outside\")\n",
"# fig.show(config= dict(displayModeBar = False))"
]
},
{
"cell_type": "code",
"execution_count": 370,
"id": "dd72ad3f",
"metadata": {},
"outputs": [],
"source": [
"# fig.data[0].hovertemplate"
]
},
{
"cell_type": "code",
"execution_count": 371,
"id": "600d7459",
"metadata": {},
"outputs": [],
"source": [
"# fig = px.line(data.sort_values(ascending=True, by='Publication Year'),\n",
"# y=record_col+\"_relative_growth\",\n",
"# x='Publication Year',\n",
"# color=\"Eurovoc_Class\",line_group=\"Country\",markers=True,\n",
"# labels={\n",
"# record_col+\"_relative_growth\": 'Relative growth of co-publications (%)',\"Eurovoc_Class\": \"Region\"\n",
"# },\n",
"# title=\"Relative growth of co-publications<br>(baseline: 2011)\", template='plotly',hover_name= \"Country\")\n",
"# fig.update_traces(hovertemplate='<b>%{hovertext}</b><br>%{x}<br>Relative growth: %{y}%')\n",
"# fig.add_shape(\n",
"# # Rectangle with reference to the plot\n",
"# type=\"rect\",\n",
"# xref=\"paper\",\n",
"# yref=\"paper\",\n",
"# x0=0,\n",
"# y0=0,\n",
"# x1=1.0,\n",
"# y1=1.0,\n",
"# line=dict(\n",
"# color=\"black\",\n",
"# width=0.5,\n",
"# )\n",
"# )\n",
"# fig.update_yaxes(\n",
"# showgrid=True,\n",
"# ticks=\"outside\")\n",
"# fig.update_xaxes(\n",
"# showgrid=True,\n",
"# ticks=\"outside\")\n",
"# fig.show(config= dict(displayModeBar = False))"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "908f9de6",
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": 372,
"id": "0ee76d32",
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.plotly.v1+json": {
"config": {
"displayModeBar": false,
"plotlyServerURL": "https://plot.ly"
},
"data": [
{
"fillpattern": {
"shape": ""
},
"hovertemplate": "<b>%{hovertext}</b><br>%{x}<br>Co-publications: %{y}",
"hovertext": [
"Austria",
"Austria",
"Austria",
"Austria",
"Austria",
"Austria",
"Austria",
"Austria",
"Austria",
"Austria",
"Austria",
"Austria"
],
"legendgroup": "Western Europe",
"line": {
"color": "#636efa"
},
"marker": {
"symbol": "circle"
},
"mode": "lines",
"name": "Western Europe",
"orientation": "v",
"showlegend": true,
"stackgroup": "1",
"type": "scatter",
"x": [
2011,
2012,
2013,
2014,
2015,
2016,
2017,
2018,
2019,
2020,
2021,
2022
],
"xaxis": "x2",
"y": [
22,
46,
72,
111,
161,
218,
290,
379,
517,
654,
839,
1044
],
"yaxis": "y2"
},
{
"fillpattern": {
"shape": ""
},
"hovertemplate": "<b>%{hovertext}</b><br>%{x}<br>Co-publications: %{y}",
"hovertext": [
"France",
"France",
"France",
"France",
"France",
"France",
"France",
"France",
"France",
"France",
"France",
"France"
],
"legendgroup": "Western Europe",
"line": {
"color": "#636efa"
},
"marker": {
"symbol": "circle"
},
"mode": "lines",
"name": "Western Europe",
"orientation": "v",
"showlegend": false,
"stackgroup": "1",
"type": "scatter",
"x": [
2011,
2012,
2013,
2014,
2015,
2016,
2017,
2018,
2019,
2020,
2021,
2022
],
"xaxis": "x2",
"y": [
117,
247,
421,
652,
921,
1246,
1594,
2085,
2733,
3424,
4231,
5089
],
"yaxis": "y2"
},
{
"fillpattern": {
"shape": ""
},
"hovertemplate": "<b>%{hovertext}</b><br>%{x}<br>Co-publications: %{y}",
"hovertext": [
"United Kingdom",
"United Kingdom",
"United Kingdom",
"United Kingdom",
"United Kingdom",
"United Kingdom",
"United Kingdom",
"United Kingdom",
"United Kingdom",
"United Kingdom",
"United Kingdom",
"United Kingdom"
],
"legendgroup": "Western Europe",
"line": {
"color": "#636efa"
},
"marker": {
"symbol": "circle"
},
"mode": "lines",
"name": "Western Europe",
"orientation": "v",
"showlegend": false,
"stackgroup": "1",
"type": "scatter",
"x": [
2011,
2012,
2013,
2014,
2015,
2016,
2017,
2018,
2019,
2020,
2021,
2022
],
"xaxis": "x2",
"y": [
363,
780,
1311,
1971,
2752,
3731,
5081,
6918,
9348,
12456,
16174,
20419
],
"yaxis": "y2"
},
{
"fillpattern": {
"shape": ""
},
"hovertemplate": "<b>%{hovertext}</b><br>%{x}<br>Co-publications: %{y}",
"hovertext": [
"Germany",
"Germany",
"Germany",
"Germany",
"Germany",
"Germany",
"Germany",
"Germany",
"Germany",
"Germany",
"Germany",
"Germany"
],
"legendgroup": "Western Europe",
"line": {
"color": "#636efa"
},
"marker": {
"symbol": "circle"
},
"mode": "lines",
"name": "Western Europe",
"orientation": "v",
"showlegend": false,
"stackgroup": "1",
"type": "scatter",
"x": [
2011,
2012,
2013,
2014,
2015,
2016,
2017,
2018,
2019,
2020,
2021,
2022
],
"xaxis": "x2",
"y": [
123,
295,
487,
760,
1070,
1435,
1891,
2495,
3296,
4203,
5413,
6799
],
"yaxis": "y2"
},
{
"fillpattern": {
"shape": ""
},
"hovertemplate": "<b>%{hovertext}</b><br>%{x}<br>Co-publications: %{y}",
"hovertext": [
"Ireland",
"Ireland",
"Ireland",
"Ireland",
"Ireland",
"Ireland",
"Ireland",
"Ireland",
"Ireland",
"Ireland",
"Ireland",
"Ireland"
],
"legendgroup": "Western Europe",
"line": {
"color": "#636efa"
},
"marker": {
"symbol": "circle"
},
"mode": "lines",
"name": "Western Europe",
"orientation": "v",
"showlegend": false,
"stackgroup": "1",
"type": "scatter",
"x": [
2011,
2012,
2013,
2014,
2015,
2016,
2017,
2018,
2019,
2020,
2021,
2022
],
"xaxis": "x2",
"y": [
13,
29,
51,
82,
109,
154,
220,
292,
376,
492,
659,
846
],
"yaxis": "y2"
},
{
"fillpattern": {
"shape": ""
},
"hovertemplate": "<b>%{hovertext}</b><br>%{x}<br>Co-publications: %{y}",
"hovertext": [
"Luxembourg",
"Luxembourg",
"Luxembourg",
"Luxembourg",
"Luxembourg",
"Luxembourg",
"Luxembourg",
"Luxembourg",
"Luxembourg",
"Luxembourg",
"Luxembourg",
"Luxembourg"
],
"legendgroup": "Western Europe",
"line": {
"color": "#636efa"
},
"marker": {
"symbol": "circle"
},
"mode": "lines",
"name": "Western Europe",
"orientation": "v",
"showlegend": false,
"stackgroup": "1",
"type": "scatter",
"x": [
2011,
2012,
2013,
2014,
2015,
2016,
2017,
2018,
2019,
2020,
2021,
2022
],
"xaxis": "x2",
"y": [
2,
5,
8,
9,
17,
26,
39,
54,
72,
94,
129,
180
],
"yaxis": "y2"
},
{
"fillpattern": {
"shape": ""
},
"hovertemplate": "<b>%{hovertext}</b><br>%{x}<br>Co-publications: %{y}",
"hovertext": [
"Netherlands",
"Netherlands",
"Netherlands",
"Netherlands",
"Netherlands",
"Netherlands",
"Netherlands",
"Netherlands",
"Netherlands",
"Netherlands",
"Netherlands",
"Netherlands"
],
"legendgroup": "Western Europe",
"line": {
"color": "#636efa"
},
"marker": {
"symbol": "circle"
},
"mode": "lines",
"name": "Western Europe",
"orientation": "v",
"showlegend": false,
"stackgroup": "1",
"type": "scatter",
"x": [
2011,
2012,
2013,
2014,
2015,
2016,
2017,
2018,
2019,
2020,
2021,
2022
],
"xaxis": "x2",
"y": [
72,
136,
213,
316,
455,
621,
841,
1138,
1546,
2016,
2545,
3200
],
"yaxis": "y2"
},
{
"fillpattern": {
"shape": ""
},
"hovertemplate": "<b>%{hovertext}</b><br>%{x}<br>Co-publications: %{y}",
"hovertext": [
"Switzerland",
"Switzerland",
"Switzerland",
"Switzerland",
"Switzerland",
"Switzerland",
"Switzerland",
"Switzerland",
"Switzerland",
"Switzerland",
"Switzerland",
"Switzerland"
],
"legendgroup": "Western Europe",
"line": {
"color": "#636efa"
},
"marker": {
"symbol": "circle"
},
"mode": "lines",
"name": "Western Europe",
"orientation": "v",
"showlegend": false,
"stackgroup": "1",
"type": "scatter",
"x": [
2011,
2012,
2013,
2014,
2015,
2016,
2017,
2018,
2019,
2020,
2021,
2022
],
"xaxis": "x2",
"y": [
37,
87,
141,
215,
289,
384,
539,
734,
967,
1230,
1579,
2026
],
"yaxis": "y2"
},
{
"fillpattern": {
"shape": ""
},
"hovertemplate": "<b>%{hovertext}</b><br>%{x}<br>Co-publications: %{y}",
"hovertext": [
"Belgium",
"Belgium",
"Belgium",
"Belgium",
"Belgium",
"Belgium",
"Belgium",
"Belgium",
"Belgium",
"Belgium",
"Belgium",
"Belgium"
],
"legendgroup": "Western Europe",
"line": {
"color": "#636efa"
},
"marker": {
"symbol": "circle"
},
"mode": "lines",
"name": "Western Europe",
"orientation": "v",
"showlegend": false,
"stackgroup": "1",
"type": "scatter",
"x": [
2011,
2012,
2013,
2014,
2015,
2016,
2017,
2018,
2019,
2020,
2021,
2022
],
"xaxis": "x2",
"y": [
34,
72,
112,
177,
248,
329,
419,
552,
731,
944,
1186,
1478
],
"yaxis": "y2"
},
{
"fillpattern": {
"shape": ""
},
"hovertemplate": "<b>%{hovertext}</b><br>%{x}<br>Co-publications: %{y}",
"hovertext": [
"Croatia",
"Croatia",
"Croatia",
"Croatia",
"Croatia",
"Croatia",
"Croatia",
"Croatia",
"Croatia",
"Croatia",
"Croatia",
"Croatia"
],
"legendgroup": "Eastern Europe",
"line": {
"color": "#EF553B"
},
"marker": {
"symbol": "circle"
},
"mode": "lines",
"name": "Eastern Europe",
"orientation": "v",
"showlegend": true,
"stackgroup": "1",
"type": "scatter",
"x": [
2011,
2012,
2013,
2014,
2015,
2016,
2017,
2018,
2019,
2020,
2021,
2022
],
"xaxis": "x2",
"y": [
1,
3,
9,
17,
27,
34,
44,
63,
90,
119,
152,
187
],
"yaxis": "y2"
},
{
"fillpattern": {
"shape": ""
},
"hovertemplate": "<b>%{hovertext}</b><br>%{x}<br>Co-publications: %{y}",
"hovertext": [
"Romania",
"Romania",
"Romania",
"Romania",
"Romania",
"Romania",
"Romania",
"Romania",
"Romania",
"Romania",
"Romania",
"Romania"
],
"legendgroup": "Eastern Europe",
"line": {
"color": "#EF553B"
},
"marker": {
"symbol": "circle"
},
"mode": "lines",
"name": "Eastern Europe",
"orientation": "v",
"showlegend": false,
"stackgroup": "1",
"type": "scatter",
"x": [
2011,
2012,
2013,
2014,
2015,
2016,
2017,
2018,
2019,
2020,
2021,
2022
],
"xaxis": "x2",
"y": [
7,
22,
35,
51,
76,
102,
139,
196,
260,
315,
363,
425
],
"yaxis": "y2"
},
{
"fillpattern": {
"shape": ""
},
"hovertemplate": "<b>%{hovertext}</b><br>%{x}<br>Co-publications: %{y}",
"hovertext": [
"Slovenia",
"Slovenia",
"Slovenia",
"Slovenia",
"Slovenia",
"Slovenia",
"Slovenia",
"Slovenia",
"Slovenia",
"Slovenia",
"Slovenia",
"Slovenia"
],
"legendgroup": "Eastern Europe",
"line": {
"color": "#EF553B"
},
"marker": {
"symbol": "circle"
},
"mode": "lines",
"name": "Eastern Europe",
"orientation": "v",
"showlegend": false,
"stackgroup": "1",
"type": "scatter",
"x": [
2011,
2012,
2013,
2014,
2015,
2016,
2017,
2018,
2019,
2020,
2021,
2022
],
"xaxis": "x2",
"y": [
7,
14,
24,
36,
53,
80,
102,
149,
203,
234,
282,
322
],
"yaxis": "y2"
},
{
"fillpattern": {
"shape": ""
},
"hovertemplate": "<b>%{hovertext}</b><br>%{x}<br>Co-publications: %{y}",
"hovertext": [
"Bulgaria",
"Bulgaria",
"Bulgaria",
"Bulgaria",
"Bulgaria",
"Bulgaria",
"Bulgaria",
"Bulgaria",
"Bulgaria",
"Bulgaria",
"Bulgaria",
"Bulgaria"
],
"legendgroup": "Eastern Europe",
"line": {
"color": "#EF553B"
},
"marker": {
"symbol": "circle"
},
"mode": "lines",
"name": "Eastern Europe",
"orientation": "v",
"showlegend": false,
"stackgroup": "1",
"type": "scatter",
"x": [
2011,
2012,
2013,
2014,
2015,
2016,
2017,
2018,
2019,
2020,
2021,
2022
],
"xaxis": "x2",
"y": [
4,
9,
17,
26,
33,
52,
73,
91,
101,
126,
158,
177
],
"yaxis": "y2"
},
{
"fillpattern": {
"shape": ""
},
"hovertemplate": "<b>%{hovertext}</b><br>%{x}<br>Co-publications: %{y}",
"hovertext": [
"Hungary",
"Hungary",
"Hungary",
"Hungary",
"Hungary",
"Hungary",
"Hungary",
"Hungary",
"Hungary",
"Hungary",
"Hungary",
"Hungary"
],
"legendgroup": "Eastern Europe",
"line": {
"color": "#EF553B"
},
"marker": {
"symbol": "circle"
},
"mode": "lines",
"name": "Eastern Europe",
"orientation": "v",
"showlegend": false,
"stackgroup": "1",
"type": "scatter",
"x": [
2011,
2012,
2013,
2014,
2015,
2016,
2017,
2018,
2019,
2020,
2021,
2022
],
"xaxis": "x2",
"y": [
11,
22,
43,
59,
79,
117,
151,
198,
259,
320,
403,
493
],
"yaxis": "y2"
},
{
"fillpattern": {
"shape": ""
},
"hovertemplate": "<b>%{hovertext}</b><br>%{x}<br>Co-publications: %{y}",
"hovertext": [
"Poland",
"Poland",
"Poland",
"Poland",
"Poland",
"Poland",
"Poland",
"Poland",
"Poland",
"Poland",
"Poland",
"Poland"
],
"legendgroup": "Eastern Europe",
"line": {
"color": "#EF553B"
},
"marker": {
"symbol": "circle"
},
"mode": "lines",
"name": "Eastern Europe",
"orientation": "v",
"showlegend": false,
"stackgroup": "1",
"type": "scatter",
"x": [
2011,
2012,
2013,
2014,
2015,
2016,
2017,
2018,
2019,
2020,
2021,
2022
],
"xaxis": "x2",
"y": [
17,
48,
85,
142,
215,
297,
395,
505,
643,
824,
1100,
1453
],
"yaxis": "y2"
},
{
"fillpattern": {
"shape": ""
},
"hovertemplate": "<b>%{hovertext}</b><br>%{x}<br>Co-publications: %{y}",
"hovertext": [
"Czech Republic",
"Czech Republic",
"Czech Republic",
"Czech Republic",
"Czech Republic",
"Czech Republic",
"Czech Republic",
"Czech Republic",
"Czech Republic",
"Czech Republic",
"Czech Republic",
"Czech Republic"
],
"legendgroup": "Eastern Europe",
"line": {
"color": "#EF553B"
},
"marker": {
"symbol": "circle"
},
"mode": "lines",
"name": "Eastern Europe",
"orientation": "v",
"showlegend": false,
"stackgroup": "1",
"type": "scatter",
"x": [
2011,
2012,
2013,
2014,
2015,
2016,
2017,
2018,
2019,
2020,
2021,
2022
],
"xaxis": "x2",
"y": [
13,
28,
44,
65,
85,
121,
158,
214,
278,
359,
452,
575
],
"yaxis": "y2"
},
{
"fillpattern": {
"shape": ""
},
"hovertemplate": "<b>%{hovertext}</b><br>%{x}<br>Co-publications: %{y}",
"hovertext": [
"Slovakia",
"Slovakia",
"Slovakia",
"Slovakia",
"Slovakia",
"Slovakia",
"Slovakia",
"Slovakia",
"Slovakia",
"Slovakia",
"Slovakia",
"Slovakia"
],
"legendgroup": "Eastern Europe",
"line": {
"color": "#EF553B"
},
"marker": {
"symbol": "circle"
},
"mode": "lines",
"name": "Eastern Europe",
"orientation": "v",
"showlegend": false,
"stackgroup": "1",
"type": "scatter",
"x": [
2011,
2012,
2013,
2014,
2015,
2016,
2017,
2018,
2019,
2020,
2021,
2022
],
"xaxis": "x2",
"y": [
9,
15,
21,
31,
43,
65,
83,
110,
137,
171,
207,
252
],
"yaxis": "y2"
},
{
"fillpattern": {
"shape": ""
},
"hovertemplate": "<b>%{hovertext}</b><br>%{x}<br>Co-publications: %{y}",
"hovertext": [
"Portugal",
"Portugal",
"Portugal",
"Portugal",
"Portugal",
"Portugal",
"Portugal",
"Portugal",
"Portugal",
"Portugal",
"Portugal",
"Portugal"
],
"legendgroup": "Southern Europe",
"line": {
"color": "#00cc96"
},
"marker": {
"symbol": "circle"
},
"mode": "lines",
"name": "Southern Europe",
"orientation": "v",
"showlegend": true,
"stackgroup": "1",
"type": "scatter",
"x": [
2011,
2012,
2013,
2014,
2015,
2016,
2017,
2018,
2019,
2020,
2021,
2022
],
"xaxis": "x2",
"y": [
16,
39,
74,
115,
160,
218,
297,
416,
552,
699,
903,
1115
],
"yaxis": "y2"
},
{
"fillpattern": {
"shape": ""
},
"hovertemplate": "<b>%{hovertext}</b><br>%{x}<br>Co-publications: %{y}",
"hovertext": [
"Greece",
"Greece",
"Greece",
"Greece",
"Greece",
"Greece",
"Greece",
"Greece",
"Greece",
"Greece",
"Greece",
"Greece"
],
"legendgroup": "Southern Europe",
"line": {
"color": "#00cc96"
},
"marker": {
"symbol": "circle"
},
"mode": "lines",
"name": "Southern Europe",
"orientation": "v",
"showlegend": false,
"stackgroup": "1",
"type": "scatter",
"x": [
2011,
2012,
2013,
2014,
2015,
2016,
2017,
2018,
2019,
2020,
2021,
2022
],
"xaxis": "x2",
"y": [
15,
33,
52,
84,
119,
169,
216,
297,
411,
533,
672,
853
],
"yaxis": "y2"
},
{
"fillpattern": {
"shape": ""
},
"hovertemplate": "<b>%{hovertext}</b><br>%{x}<br>Co-publications: %{y}",
"hovertext": [
"Spain",
"Spain",
"Spain",
"Spain",
"Spain",
"Spain",
"Spain",
"Spain",
"Spain",
"Spain",
"Spain",
"Spain"
],
"legendgroup": "Southern Europe",
"line": {
"color": "#00cc96"
},
"marker": {
"symbol": "circle"
},
"mode": "lines",
"name": "Southern Europe",
"orientation": "v",
"showlegend": false,
"stackgroup": "1",
"type": "scatter",
"x": [
2011,
2012,
2013,
2014,
2015,
2016,
2017,
2018,
2019,
2020,
2021,
2022
],
"xaxis": "x2",
"y": [
50,
99,
168,
280,
418,
603,
835,
1108,
1464,
1850,
2323,
2963
],
"yaxis": "y2"
},
{
"fillpattern": {
"shape": ""
},
"hovertemplate": "<b>%{hovertext}</b><br>%{x}<br>Co-publications: %{y}",
"hovertext": [
"Italy",
"Italy",
"Italy",
"Italy",
"Italy",
"Italy",
"Italy",
"Italy",
"Italy",
"Italy",
"Italy",
"Italy"
],
"legendgroup": "Southern Europe",
"line": {
"color": "#00cc96"
},
"marker": {
"symbol": "circle"
},
"mode": "lines",
"name": "Southern Europe",
"orientation": "v",
"showlegend": false,
"stackgroup": "1",
"type": "scatter",
"x": [
2011,
2012,
2013,
2014,
2015,
2016,
2017,
2018,
2019,
2020,
2021,
2022
],
"xaxis": "x2",
"y": [
51,
121,
205,
321,
499,
686,
933,
1258,
1699,
2270,
2911,
3722
],
"yaxis": "y2"
},
{
"fillpattern": {
"shape": ""
},
"hovertemplate": "<b>%{hovertext}</b><br>%{x}<br>Co-publications: %{y}",
"hovertext": [
"Malta",
"Malta",
"Malta",
"Malta",
"Malta",
"Malta",
"Malta",
"Malta",
"Malta",
"Malta",
"Malta",
"Malta"
],
"legendgroup": "Southern Europe",
"line": {
"color": "#00cc96"
},
"marker": {
"symbol": "circle"
},
"mode": "lines",
"name": "Southern Europe",
"orientation": "v",
"showlegend": false,
"stackgroup": "1",
"type": "scatter",
"x": [
2011,
2012,
2013,
2014,
2015,
2016,
2017,
2018,
2019,
2020,
2021,
2022
],
"xaxis": "x2",
"y": [
1,
1,
1,
1,
2,
3,
3,
3,
9,
11,
18,
28
],
"yaxis": "y2"
},
{
"fillpattern": {
"shape": ""
},
"hovertemplate": "<b>%{hovertext}</b><br>%{x}<br>Co-publications: %{y}",
"hovertext": [
"Cyprus",
"Cyprus",
"Cyprus",
"Cyprus",
"Cyprus",
"Cyprus",
"Cyprus",
"Cyprus",
"Cyprus",
"Cyprus",
"Cyprus",
"Cyprus"
],
"legendgroup": "Southern Europe",
"line": {
"color": "#00cc96"
},
"marker": {
"symbol": "circle"
},
"mode": "lines",
"name": "Southern Europe",
"orientation": "v",
"showlegend": false,
"stackgroup": "1",
"type": "scatter",
"x": [
2011,
2012,
2013,
2014,
2015,
2016,
2017,
2018,
2019,
2020,
2021,
2022
],
"xaxis": "x2",
"y": [
2,
3,
8,
13,
18,
23,
31,
38,
53,
81,
117,
160
],
"yaxis": "y2"
},
{
"fillpattern": {
"shape": ""
},
"hovertemplate": "<b>%{hovertext}</b><br>%{x}<br>Co-publications: %{y}",
"hovertext": [
"Finland",
"Finland",
"Finland",
"Finland",
"Finland",
"Finland",
"Finland",
"Finland",
"Finland",
"Finland",
"Finland",
"Finland"
],
"legendgroup": "Northern Europe",
"line": {
"color": "#ab63fa"
},
"marker": {
"symbol": "circle"
},
"mode": "lines",
"name": "Northern Europe",
"orientation": "v",
"showlegend": true,
"stackgroup": "1",
"type": "scatter",
"x": [
2011,
2012,
2013,
2014,
2015,
2016,
2017,
2018,
2019,
2020,
2021,
2022
],
"xaxis": "x2",
"y": [
31,
66,
110,
192,
292,
417,
543,
741,
982,
1238,
1527,
1907
],
"yaxis": "y2"
},
{
"fillpattern": {
"shape": ""
},
"hovertemplate": "<b>%{hovertext}</b><br>%{x}<br>Co-publications: %{y}",
"hovertext": [
"Sweden",
"Sweden",
"Sweden",
"Sweden",
"Sweden",
"Sweden",
"Sweden",
"Sweden",
"Sweden",
"Sweden",
"Sweden",
"Sweden"
],
"legendgroup": "Northern Europe",
"line": {
"color": "#ab63fa"
},
"marker": {
"symbol": "circle"
},
"mode": "lines",
"name": "Northern Europe",
"orientation": "v",
"showlegend": false,
"stackgroup": "1",
"type": "scatter",
"x": [
2011,
2012,
2013,
2014,
2015,
2016,
2017,
2018,
2019,
2020,
2021,
2022
],
"xaxis": "x2",
"y": [
34,
84,
143,
226,
339,
509,
742,
974,
1359,
1718,
2146,
2656
],
"yaxis": "y2"
},
{
"fillpattern": {
"shape": ""
},
"hovertemplate": "<b>%{hovertext}</b><br>%{x}<br>Co-publications: %{y}",
"hovertext": [
"Estonia",
"Estonia",
"Estonia",
"Estonia",
"Estonia",
"Estonia",
"Estonia",
"Estonia",
"Estonia",
"Estonia",
"Estonia",
"Estonia"
],
"legendgroup": "Northern Europe",
"line": {
"color": "#ab63fa"
},
"marker": {
"symbol": "circle"
},
"mode": "lines",
"name": "Northern Europe",
"orientation": "v",
"showlegend": false,
"stackgroup": "1",
"type": "scatter",
"x": [
2011,
2012,
2013,
2014,
2015,
2016,
2017,
2018,
2019,
2020,
2021,
2022
],
"xaxis": "x2",
"y": [
3,
6,
13,
23,
35,
45,
60,
75,
91,
129,
174,
213
],
"yaxis": "y2"
},
{
"fillpattern": {
"shape": ""
},
"hovertemplate": "<b>%{hovertext}</b><br>%{x}<br>Co-publications: %{y}",
"hovertext": [
"Lithuania",
"Lithuania",
"Lithuania",
"Lithuania",
"Lithuania",
"Lithuania",
"Lithuania",
"Lithuania",
"Lithuania",
"Lithuania",
"Lithuania",
"Lithuania"
],
"legendgroup": "Northern Europe",
"line": {
"color": "#ab63fa"
},
"marker": {
"symbol": "circle"
},
"mode": "lines",
"name": "Northern Europe",
"orientation": "v",
"showlegend": false,
"stackgroup": "1",
"type": "scatter",
"x": [
2011,
2012,
2013,
2014,
2015,
2016,
2017,
2018,
2019,
2020,
2021,
2022
],
"xaxis": "x2",
"y": [
1,
3,
13,
17,
21,
34,
46,
69,
107,
143,
181,
219
],
"yaxis": "y2"
},
{
"fillpattern": {
"shape": ""
},
"hovertemplate": "<b>%{hovertext}</b><br>%{x}<br>Co-publications: %{y}",
"hovertext": [
"Latvia",
"Latvia",
"Latvia",
"Latvia",
"Latvia",
"Latvia",
"Latvia",
"Latvia",
"Latvia",
"Latvia",
"Latvia",
"Latvia"
],
"legendgroup": "Northern Europe",
"line": {
"color": "#ab63fa"
},
"marker": {
"symbol": "circle"
},
"mode": "lines",
"name": "Northern Europe",
"orientation": "v",
"showlegend": false,
"stackgroup": "1",
"type": "scatter",
"x": [
2011,
2012,
2013,
2014,
2015,
2016,
2017,
2018,
2019,
2020,
2021,
2022
],
"xaxis": "x2",
"y": [
0,
0,
1,
1,
2,
10,
20,
35,
45,
54,
67,
85
],
"yaxis": "y2"
},
{
"fillpattern": {
"shape": ""
},
"hovertemplate": "<b>%{hovertext}</b><br>%{x}<br>Co-publications: %{y}",
"hovertext": [
"Norway",
"Norway",
"Norway",
"Norway",
"Norway",
"Norway",
"Norway",
"Norway",
"Norway",
"Norway",
"Norway",
"Norway"
],
"legendgroup": "Northern Europe",
"line": {
"color": "#ab63fa"
},
"marker": {
"symbol": "circle"
},
"mode": "lines",
"name": "Northern Europe",
"orientation": "v",
"showlegend": false,
"stackgroup": "1",
"type": "scatter",
"x": [
2011,
2012,
2013,
2014,
2015,
2016,
2017,
2018,
2019,
2020,
2021,
2022
],
"xaxis": "x2",
"y": [
30,
72,
132,
208,
275,
363,
467,
601,
823,
1076,
1380,
1691
],
"yaxis": "y2"
},
{
"fillpattern": {
"shape": ""
},
"hovertemplate": "<b>%{hovertext}</b><br>%{x}<br>Co-publications: %{y}",
"hovertext": [
"Denmark",
"Denmark",
"Denmark",
"Denmark",
"Denmark",
"Denmark",
"Denmark",
"Denmark",
"Denmark",
"Denmark",
"Denmark",
"Denmark"
],
"legendgroup": "Northern Europe",
"line": {
"color": "#ab63fa"
},
"marker": {
"symbol": "circle"
},
"mode": "lines",
"name": "Northern Europe",
"orientation": "v",
"showlegend": false,
"stackgroup": "1",
"type": "scatter",
"x": [
2011,
2012,
2013,
2014,
2015,
2016,
2017,
2018,
2019,
2020,
2021,
2022
],
"xaxis": "x2",
"y": [
35,
68,
108,
167,
235,
309,
410,
605,
839,
1084,
1377,
1720
],
"yaxis": "y2"
},
{
"hovertemplate": "<b>%{hovertext}</b><br>%{x}<br>Co-publications: %{y}",
"hovertext": [
"Austria",
"Austria",
"Austria",
"Austria",
"Austria",
"Austria",
"Austria",
"Austria",
"Austria",
"Austria",
"Austria",
"Austria"
],
"legendgroup": "Western Europe",
"line": {
"color": "#636efa",
"dash": "solid"
},
"marker": {
"symbol": "circle"
},
"mode": "markers+lines",
"name": "Western Europe",
"orientation": "v",
"showlegend": false,
"type": "scatter",
"x": [
2011,
2012,
2013,
2014,
2015,
2016,
2017,
2018,
2019,
2020,
2021,
2022
],
"xaxis": "x3",
"y": [
22,
24,
26,
39,
50,
57,
72,
89,
138,
137,
185,
205
],
"yaxis": "y3"
},
{
"hovertemplate": "<b>%{hovertext}</b><br>%{x}<br>Co-publications: %{y}",
"hovertext": [
"France",
"France",
"France",
"France",
"France",
"France",
"France",
"France",
"France",
"France",
"France",
"France"
],
"legendgroup": "Western Europe",
"line": {
"color": "#636efa",
"dash": "solid"
},
"marker": {
"symbol": "circle"
},
"mode": "markers+lines",
"name": "Western Europe",
"orientation": "v",
"showlegend": false,
"type": "scatter",
"x": [
2011,
2012,
2013,
2014,
2015,
2016,
2017,
2018,
2019,
2020,
2021,
2022
],
"xaxis": "x3",
"y": [
117,
130,
174,
231,
269,
325,
348,
491,
648,
691,
807,
858
],
"yaxis": "y3"
},
{
"hovertemplate": "<b>%{hovertext}</b><br>%{x}<br>Co-publications: %{y}",
"hovertext": [
"United Kingdom",
"United Kingdom",
"United Kingdom",
"United Kingdom",
"United Kingdom",
"United Kingdom",
"United Kingdom",
"United Kingdom",
"United Kingdom",
"United Kingdom",
"United Kingdom",
"United Kingdom"
],
"legendgroup": "Western Europe",
"line": {
"color": "#636efa",
"dash": "solid"
},
"marker": {
"symbol": "circle"
},
"mode": "markers+lines",
"name": "Western Europe",
"orientation": "v",
"showlegend": false,
"type": "scatter",
"x": [
2011,
2012,
2013,
2014,
2015,
2016,
2017,
2018,
2019,
2020,
2021,
2022
],
"xaxis": "x3",
"y": [
363,
417,
531,
660,
781,
979,
1350,
1837,
2430,
3108,
3718,
4245
],
"yaxis": "y3"
},
{
"hovertemplate": "<b>%{hovertext}</b><br>%{x}<br>Co-publications: %{y}",
"hovertext": [
"Germany",
"Germany",
"Germany",
"Germany",
"Germany",
"Germany",
"Germany",
"Germany",
"Germany",
"Germany",
"Germany",
"Germany"
],
"legendgroup": "Western Europe",
"line": {
"color": "#636efa",
"dash": "solid"
},
"marker": {
"symbol": "circle"
},
"mode": "markers+lines",
"name": "Western Europe",
"orientation": "v",
"showlegend": false,
"type": "scatter",
"x": [
2011,
2012,
2013,
2014,
2015,
2016,
2017,
2018,
2019,
2020,
2021,
2022
],
"xaxis": "x3",
"y": [
123,
172,
192,
273,
310,
365,
456,
604,
801,
907,
1210,
1386
],
"yaxis": "y3"
},
{
"hovertemplate": "<b>%{hovertext}</b><br>%{x}<br>Co-publications: %{y}",
"hovertext": [
"Ireland",
"Ireland",
"Ireland",
"Ireland",
"Ireland",
"Ireland",
"Ireland",
"Ireland",
"Ireland",
"Ireland",
"Ireland",
"Ireland"
],
"legendgroup": "Western Europe",
"line": {
"color": "#636efa",
"dash": "solid"
},
"marker": {
"symbol": "circle"
},
"mode": "markers+lines",
"name": "Western Europe",
"orientation": "v",
"showlegend": false,
"type": "scatter",
"x": [
2011,
2012,
2013,
2014,
2015,
2016,
2017,
2018,
2019,
2020,
2021,
2022
],
"xaxis": "x3",
"y": [
13,
16,
22,
31,
27,
45,
66,
72,
84,
116,
167,
187
],
"yaxis": "y3"
},
{
"hovertemplate": "<b>%{hovertext}</b><br>%{x}<br>Co-publications: %{y}",
"hovertext": [
"Luxembourg",
"Luxembourg",
"Luxembourg",
"Luxembourg",
"Luxembourg",
"Luxembourg",
"Luxembourg",
"Luxembourg",
"Luxembourg",
"Luxembourg",
"Luxembourg",
"Luxembourg"
],
"legendgroup": "Western Europe",
"line": {
"color": "#636efa",
"dash": "solid"
},
"marker": {
"symbol": "circle"
},
"mode": "markers+lines",
"name": "Western Europe",
"orientation": "v",
"showlegend": false,
"type": "scatter",
"x": [
2011,
2012,
2013,
2014,
2015,
2016,
2017,
2018,
2019,
2020,
2021,
2022
],
"xaxis": "x3",
"y": [
2,
3,
3,
1,
8,
9,
13,
15,
18,
22,
35,
51
],
"yaxis": "y3"
},
{
"hovertemplate": "<b>%{hovertext}</b><br>%{x}<br>Co-publications: %{y}",
"hovertext": [
"Netherlands",
"Netherlands",
"Netherlands",
"Netherlands",
"Netherlands",
"Netherlands",
"Netherlands",
"Netherlands",
"Netherlands",
"Netherlands",
"Netherlands",
"Netherlands"
],
"legendgroup": "Western Europe",
"line": {
"color": "#636efa",
"dash": "solid"
},
"marker": {
"symbol": "circle"
},
"mode": "markers+lines",
"name": "Western Europe",
"orientation": "v",
"showlegend": false,
"type": "scatter",
"x": [
2011,
2012,
2013,
2014,
2015,
2016,
2017,
2018,
2019,
2020,
2021,
2022
],
"xaxis": "x3",
"y": [
72,
64,
77,
103,
139,
166,
220,
297,
408,
470,
529,
655
],
"yaxis": "y3"
},
{
"hovertemplate": "<b>%{hovertext}</b><br>%{x}<br>Co-publications: %{y}",
"hovertext": [
"Switzerland",
"Switzerland",
"Switzerland",
"Switzerland",
"Switzerland",
"Switzerland",
"Switzerland",
"Switzerland",
"Switzerland",
"Switzerland",
"Switzerland",
"Switzerland"
],
"legendgroup": "Western Europe",
"line": {
"color": "#636efa",
"dash": "solid"
},
"marker": {
"symbol": "circle"
},
"mode": "markers+lines",
"name": "Western Europe",
"orientation": "v",
"showlegend": false,
"type": "scatter",
"x": [
2011,
2012,
2013,
2014,
2015,
2016,
2017,
2018,
2019,
2020,
2021,
2022
],
"xaxis": "x3",
"y": [
37,
50,
54,
74,
74,
95,
155,
195,
233,
263,
349,
447
],
"yaxis": "y3"
},
{
"hovertemplate": "<b>%{hovertext}</b><br>%{x}<br>Co-publications: %{y}",
"hovertext": [
"Belgium",
"Belgium",
"Belgium",
"Belgium",
"Belgium",
"Belgium",
"Belgium",
"Belgium",
"Belgium",
"Belgium",
"Belgium",
"Belgium"
],
"legendgroup": "Western Europe",
"line": {
"color": "#636efa",
"dash": "solid"
},
"marker": {
"symbol": "circle"
},
"mode": "markers+lines",
"name": "Western Europe",
"orientation": "v",
"showlegend": false,
"type": "scatter",
"x": [
2011,
2012,
2013,
2014,
2015,
2016,
2017,
2018,
2019,
2020,
2021,
2022
],
"xaxis": "x3",
"y": [
34,
38,
40,
65,
71,
81,
90,
133,
179,
213,
242,
292
],
"yaxis": "y3"
},
{
"hovertemplate": "<b>%{hovertext}</b><br>%{x}<br>Co-publications: %{y}",
"hovertext": [
"Croatia",
"Croatia",
"Croatia",
"Croatia",
"Croatia",
"Croatia",
"Croatia",
"Croatia",
"Croatia",
"Croatia",
"Croatia",
"Croatia"
],
"legendgroup": "Eastern Europe",
"line": {
"color": "#EF553B",
"dash": "solid"
},
"marker": {
"symbol": "circle"
},
"mode": "markers+lines",
"name": "Eastern Europe",
"orientation": "v",
"showlegend": false,
"type": "scatter",
"x": [
2011,
2012,
2013,
2014,
2015,
2016,
2017,
2018,
2019,
2020,
2021,
2022
],
"xaxis": "x3",
"y": [
1,
2,
6,
8,
10,
7,
10,
19,
27,
29,
33,
35
],
"yaxis": "y3"
},
{
"hovertemplate": "<b>%{hovertext}</b><br>%{x}<br>Co-publications: %{y}",
"hovertext": [
"Romania",
"Romania",
"Romania",
"Romania",
"Romania",
"Romania",
"Romania",
"Romania",
"Romania",
"Romania",
"Romania",
"Romania"
],
"legendgroup": "Eastern Europe",
"line": {
"color": "#EF553B",
"dash": "solid"
},
"marker": {
"symbol": "circle"
},
"mode": "markers+lines",
"name": "Eastern Europe",
"orientation": "v",
"showlegend": false,
"type": "scatter",
"x": [
2011,
2012,
2013,
2014,
2015,
2016,
2017,
2018,
2019,
2020,
2021,
2022
],
"xaxis": "x3",
"y": [
7,
15,
13,
16,
25,
26,
37,
57,
64,
55,
48,
62
],
"yaxis": "y3"
},
{
"hovertemplate": "<b>%{hovertext}</b><br>%{x}<br>Co-publications: %{y}",
"hovertext": [
"Slovenia",
"Slovenia",
"Slovenia",
"Slovenia",
"Slovenia",
"Slovenia",
"Slovenia",
"Slovenia",
"Slovenia",
"Slovenia",
"Slovenia",
"Slovenia"
],
"legendgroup": "Eastern Europe",
"line": {
"color": "#EF553B",
"dash": "solid"
},
"marker": {
"symbol": "circle"
},
"mode": "markers+lines",
"name": "Eastern Europe",
"orientation": "v",
"showlegend": false,
"type": "scatter",
"x": [
2011,
2012,
2013,
2014,
2015,
2016,
2017,
2018,
2019,
2020,
2021,
2022
],
"xaxis": "x3",
"y": [
7,
7,
10,
12,
17,
27,
22,
47,
54,
31,
48,
40
],
"yaxis": "y3"
},
{
"hovertemplate": "<b>%{hovertext}</b><br>%{x}<br>Co-publications: %{y}",
"hovertext": [
"Bulgaria",
"Bulgaria",
"Bulgaria",
"Bulgaria",
"Bulgaria",
"Bulgaria",
"Bulgaria",
"Bulgaria",
"Bulgaria",
"Bulgaria",
"Bulgaria",
"Bulgaria"
],
"legendgroup": "Eastern Europe",
"line": {
"color": "#EF553B",
"dash": "solid"
},
"marker": {
"symbol": "circle"
},
"mode": "markers+lines",
"name": "Eastern Europe",
"orientation": "v",
"showlegend": false,
"type": "scatter",
"x": [
2011,
2012,
2013,
2014,
2015,
2016,
2017,
2018,
2019,
2020,
2021,
2022
],
"xaxis": "x3",
"y": [
4,
5,
8,
9,
7,
19,
21,
18,
10,
25,
32,
19
],
"yaxis": "y3"
},
{
"hovertemplate": "<b>%{hovertext}</b><br>%{x}<br>Co-publications: %{y}",
"hovertext": [
"Hungary",
"Hungary",
"Hungary",
"Hungary",
"Hungary",
"Hungary",
"Hungary",
"Hungary",
"Hungary",
"Hungary",
"Hungary",
"Hungary"
],
"legendgroup": "Eastern Europe",
"line": {
"color": "#EF553B",
"dash": "solid"
},
"marker": {
"symbol": "circle"
},
"mode": "markers+lines",
"name": "Eastern Europe",
"orientation": "v",
"showlegend": false,
"type": "scatter",
"x": [
2011,
2012,
2013,
2014,
2015,
2016,
2017,
2018,
2019,
2020,
2021,
2022
],
"xaxis": "x3",
"y": [
11,
11,
21,
16,
20,
38,
34,
47,
61,
61,
83,
90
],
"yaxis": "y3"
},
{
"hovertemplate": "<b>%{hovertext}</b><br>%{x}<br>Co-publications: %{y}",
"hovertext": [
"Poland",
"Poland",
"Poland",
"Poland",
"Poland",
"Poland",
"Poland",
"Poland",
"Poland",
"Poland",
"Poland",
"Poland"
],
"legendgroup": "Eastern Europe",
"line": {
"color": "#EF553B",
"dash": "solid"
},
"marker": {
"symbol": "circle"
},
"mode": "markers+lines",
"name": "Eastern Europe",
"orientation": "v",
"showlegend": false,
"type": "scatter",
"x": [
2011,
2012,
2013,
2014,
2015,
2016,
2017,
2018,
2019,
2020,
2021,
2022
],
"xaxis": "x3",
"y": [
17,
31,
37,
57,
73,
82,
98,
110,
138,
181,
276,
353
],
"yaxis": "y3"
},
{
"hovertemplate": "<b>%{hovertext}</b><br>%{x}<br>Co-publications: %{y}",
"hovertext": [
"Czech Republic",
"Czech Republic",
"Czech Republic",
"Czech Republic",
"Czech Republic",
"Czech Republic",
"Czech Republic",
"Czech Republic",
"Czech Republic",
"Czech Republic",
"Czech Republic",
"Czech Republic"
],
"legendgroup": "Eastern Europe",
"line": {
"color": "#EF553B",
"dash": "solid"
},
"marker": {
"symbol": "circle"
},
"mode": "markers+lines",
"name": "Eastern Europe",
"orientation": "v",
"showlegend": false,
"type": "scatter",
"x": [
2011,
2012,
2013,
2014,
2015,
2016,
2017,
2018,
2019,
2020,
2021,
2022
],
"xaxis": "x3",
"y": [
13,
15,
16,
21,
20,
36,
37,
56,
64,
81,
93,
123
],
"yaxis": "y3"
},
{
"hovertemplate": "<b>%{hovertext}</b><br>%{x}<br>Co-publications: %{y}",
"hovertext": [
"Slovakia",
"Slovakia",
"Slovakia",
"Slovakia",
"Slovakia",
"Slovakia",
"Slovakia",
"Slovakia",
"Slovakia",
"Slovakia",
"Slovakia",
"Slovakia"
],
"legendgroup": "Eastern Europe",
"line": {
"color": "#EF553B",
"dash": "solid"
},
"marker": {
"symbol": "circle"
},
"mode": "markers+lines",
"name": "Eastern Europe",
"orientation": "v",
"showlegend": false,
"type": "scatter",
"x": [
2011,
2012,
2013,
2014,
2015,
2016,
2017,
2018,
2019,
2020,
2021,
2022
],
"xaxis": "x3",
"y": [
9,
6,
6,
10,
12,
22,
18,
27,
27,
34,
36,
45
],
"yaxis": "y3"
},
{
"hovertemplate": "<b>%{hovertext}</b><br>%{x}<br>Co-publications: %{y}",
"hovertext": [
"Portugal",
"Portugal",
"Portugal",
"Portugal",
"Portugal",
"Portugal",
"Portugal",
"Portugal",
"Portugal",
"Portugal",
"Portugal",
"Portugal"
],
"legendgroup": "Southern Europe",
"line": {
"color": "#00cc96",
"dash": "solid"
},
"marker": {
"symbol": "circle"
},
"mode": "markers+lines",
"name": "Southern Europe",
"orientation": "v",
"showlegend": false,
"type": "scatter",
"x": [
2011,
2012,
2013,
2014,
2015,
2016,
2017,
2018,
2019,
2020,
2021,
2022
],
"xaxis": "x3",
"y": [
16,
23,
35,
41,
45,
58,
79,
119,
136,
147,
204,
212
],
"yaxis": "y3"
},
{
"hovertemplate": "<b>%{hovertext}</b><br>%{x}<br>Co-publications: %{y}",
"hovertext": [
"Greece",
"Greece",
"Greece",
"Greece",
"Greece",
"Greece",
"Greece",
"Greece",
"Greece",
"Greece",
"Greece",
"Greece"
],
"legendgroup": "Southern Europe",
"line": {
"color": "#00cc96",
"dash": "solid"
},
"marker": {
"symbol": "circle"
},
"mode": "markers+lines",
"name": "Southern Europe",
"orientation": "v",
"showlegend": false,
"type": "scatter",
"x": [
2011,
2012,
2013,
2014,
2015,
2016,
2017,
2018,
2019,
2020,
2021,
2022
],
"xaxis": "x3",
"y": [
15,
18,
19,
32,
35,
50,
47,
81,
114,
122,
139,
181
],
"yaxis": "y3"
},
{
"hovertemplate": "<b>%{hovertext}</b><br>%{x}<br>Co-publications: %{y}",
"hovertext": [
"Spain",
"Spain",
"Spain",
"Spain",
"Spain",
"Spain",
"Spain",
"Spain",
"Spain",
"Spain",
"Spain",
"Spain"
],
"legendgroup": "Southern Europe",
"line": {
"color": "#00cc96",
"dash": "solid"
},
"marker": {
"symbol": "circle"
},
"mode": "markers+lines",
"name": "Southern Europe",
"orientation": "v",
"showlegend": false,
"type": "scatter",
"x": [
2011,
2012,
2013,
2014,
2015,
2016,
2017,
2018,
2019,
2020,
2021,
2022
],
"xaxis": "x3",
"y": [
50,
49,
69,
112,
138,
185,
232,
273,
356,
386,
473,
640
],
"yaxis": "y3"
},
{
"hovertemplate": "<b>%{hovertext}</b><br>%{x}<br>Co-publications: %{y}",
"hovertext": [
"Italy",
"Italy",
"Italy",
"Italy",
"Italy",
"Italy",
"Italy",
"Italy",
"Italy",
"Italy",
"Italy",
"Italy"
],
"legendgroup": "Southern Europe",
"line": {
"color": "#00cc96",
"dash": "solid"
},
"marker": {
"symbol": "circle"
},
"mode": "markers+lines",
"name": "Southern Europe",
"orientation": "v",
"showlegend": false,
"type": "scatter",
"x": [
2011,
2012,
2013,
2014,
2015,
2016,
2017,
2018,
2019,
2020,
2021,
2022
],
"xaxis": "x3",
"y": [
51,
70,
84,
116,
178,
187,
247,
325,
441,
571,
641,
811
],
"yaxis": "y3"
},
{
"hovertemplate": "<b>%{hovertext}</b><br>%{x}<br>Co-publications: %{y}",
"hovertext": [
"Malta",
"Malta",
"Malta",
"Malta",
"Malta",
"Malta",
"Malta",
"Malta",
"Malta",
"Malta",
"Malta",
"Malta"
],
"legendgroup": "Southern Europe",
"line": {
"color": "#00cc96",
"dash": "solid"
},
"marker": {
"symbol": "circle"
},
"mode": "markers+lines",
"name": "Southern Europe",
"orientation": "v",
"showlegend": false,
"type": "scatter",
"x": [
2011,
2012,
2013,
2014,
2015,
2016,
2017,
2018,
2019,
2020,
2021,
2022
],
"xaxis": "x3",
"y": [
1,
0,
0,
0,
1,
1,
0,
0,
6,
2,
7,
10
],
"yaxis": "y3"
},
{
"hovertemplate": "<b>%{hovertext}</b><br>%{x}<br>Co-publications: %{y}",
"hovertext": [
"Cyprus",
"Cyprus",
"Cyprus",
"Cyprus",
"Cyprus",
"Cyprus",
"Cyprus",
"Cyprus",
"Cyprus",
"Cyprus",
"Cyprus",
"Cyprus"
],
"legendgroup": "Southern Europe",
"line": {
"color": "#00cc96",
"dash": "solid"
},
"marker": {
"symbol": "circle"
},
"mode": "markers+lines",
"name": "Southern Europe",
"orientation": "v",
"showlegend": false,
"type": "scatter",
"x": [
2011,
2012,
2013,
2014,
2015,
2016,
2017,
2018,
2019,
2020,
2021,
2022
],
"xaxis": "x3",
"y": [
2,
1,
5,
5,
5,
5,
8,
7,
15,
28,
36,
43
],
"yaxis": "y3"
},
{
"hovertemplate": "<b>%{hovertext}</b><br>%{x}<br>Co-publications: %{y}",
"hovertext": [
"Finland",
"Finland",
"Finland",
"Finland",
"Finland",
"Finland",
"Finland",
"Finland",
"Finland",
"Finland",
"Finland",
"Finland"
],
"legendgroup": "Northern Europe",
"line": {
"color": "#ab63fa",
"dash": "solid"
},
"marker": {
"symbol": "circle"
},
"mode": "markers+lines",
"name": "Northern Europe",
"orientation": "v",
"showlegend": false,
"type": "scatter",
"x": [
2011,
2012,
2013,
2014,
2015,
2016,
2017,
2018,
2019,
2020,
2021,
2022
],
"xaxis": "x3",
"y": [
31,
35,
44,
82,
100,
125,
126,
198,
241,
256,
289,
380
],
"yaxis": "y3"
},
{
"hovertemplate": "<b>%{hovertext}</b><br>%{x}<br>Co-publications: %{y}",
"hovertext": [
"Sweden",
"Sweden",
"Sweden",
"Sweden",
"Sweden",
"Sweden",
"Sweden",
"Sweden",
"Sweden",
"Sweden",
"Sweden",
"Sweden"
],
"legendgroup": "Northern Europe",
"line": {
"color": "#ab63fa",
"dash": "solid"
},
"marker": {
"symbol": "circle"
},
"mode": "markers+lines",
"name": "Northern Europe",
"orientation": "v",
"showlegend": false,
"type": "scatter",
"x": [
2011,
2012,
2013,
2014,
2015,
2016,
2017,
2018,
2019,
2020,
2021,
2022
],
"xaxis": "x3",
"y": [
34,
50,
59,
83,
113,
170,
233,
232,
385,
359,
428,
510
],
"yaxis": "y3"
},
{
"hovertemplate": "<b>%{hovertext}</b><br>%{x}<br>Co-publications: %{y}",
"hovertext": [
"Estonia",
"Estonia",
"Estonia",
"Estonia",
"Estonia",
"Estonia",
"Estonia",
"Estonia",
"Estonia",
"Estonia",
"Estonia",
"Estonia"
],
"legendgroup": "Northern Europe",
"line": {
"color": "#ab63fa",
"dash": "solid"
},
"marker": {
"symbol": "circle"
},
"mode": "markers+lines",
"name": "Northern Europe",
"orientation": "v",
"showlegend": false,
"type": "scatter",
"x": [
2011,
2012,
2013,
2014,
2015,
2016,
2017,
2018,
2019,
2020,
2021,
2022
],
"xaxis": "x3",
"y": [
3,
3,
7,
10,
12,
10,
15,
15,
16,
38,
45,
39
],
"yaxis": "y3"
},
{
"hovertemplate": "<b>%{hovertext}</b><br>%{x}<br>Co-publications: %{y}",
"hovertext": [
"Lithuania",
"Lithuania",
"Lithuania",
"Lithuania",
"Lithuania",
"Lithuania",
"Lithuania",
"Lithuania",
"Lithuania",
"Lithuania",
"Lithuania",
"Lithuania"
],
"legendgroup": "Northern Europe",
"line": {
"color": "#ab63fa",
"dash": "solid"
},
"marker": {
"symbol": "circle"
},
"mode": "markers+lines",
"name": "Northern Europe",
"orientation": "v",
"showlegend": false,
"type": "scatter",
"x": [
2011,
2012,
2013,
2014,
2015,
2016,
2017,
2018,
2019,
2020,
2021,
2022
],
"xaxis": "x3",
"y": [
1,
2,
10,
4,
4,
13,
12,
23,
38,
36,
38,
38
],
"yaxis": "y3"
},
{
"hovertemplate": "<b>%{hovertext}</b><br>%{x}<br>Co-publications: %{y}",
"hovertext": [
"Latvia",
"Latvia",
"Latvia",
"Latvia",
"Latvia",
"Latvia",
"Latvia",
"Latvia",
"Latvia",
"Latvia",
"Latvia",
"Latvia"
],
"legendgroup": "Northern Europe",
"line": {
"color": "#ab63fa",
"dash": "solid"
},
"marker": {
"symbol": "circle"
},
"mode": "markers+lines",
"name": "Northern Europe",
"orientation": "v",
"showlegend": false,
"type": "scatter",
"x": [
2011,
2012,
2013,
2014,
2015,
2016,
2017,
2018,
2019,
2020,
2021,
2022
],
"xaxis": "x3",
"y": [
0,
0,
1,
0,
1,
8,
10,
15,
10,
9,
13,
18
],
"yaxis": "y3"
},
{
"hovertemplate": "<b>%{hovertext}</b><br>%{x}<br>Co-publications: %{y}",
"hovertext": [
"Norway",
"Norway",
"Norway",
"Norway",
"Norway",
"Norway",
"Norway",
"Norway",
"Norway",
"Norway",
"Norway",
"Norway"
],
"legendgroup": "Northern Europe",
"line": {
"color": "#ab63fa",
"dash": "solid"
},
"marker": {
"symbol": "circle"
},
"mode": "markers+lines",
"name": "Northern Europe",
"orientation": "v",
"showlegend": false,
"type": "scatter",
"x": [
2011,
2012,
2013,
2014,
2015,
2016,
2017,
2018,
2019,
2020,
2021,
2022
],
"xaxis": "x3",
"y": [
30,
42,
60,
76,
67,
88,
104,
134,
222,
253,
304,
311
],
"yaxis": "y3"
},
{
"hovertemplate": "<b>%{hovertext}</b><br>%{x}<br>Co-publications: %{y}",
"hovertext": [
"Denmark",
"Denmark",
"Denmark",
"Denmark",
"Denmark",
"Denmark",
"Denmark",
"Denmark",
"Denmark",
"Denmark",
"Denmark",
"Denmark"
],
"legendgroup": "Northern Europe",
"line": {
"color": "#ab63fa",
"dash": "solid"
},
"marker": {
"symbol": "circle"
},
"mode": "markers+lines",
"name": "Northern Europe",
"orientation": "v",
"showlegend": false,
"type": "scatter",
"x": [
2011,
2012,
2013,
2014,
2015,
2016,
2017,
2018,
2019,
2020,
2021,
2022
],
"xaxis": "x3",
"y": [
35,
33,
40,
59,
68,
74,
101,
195,
234,
245,
293,
343
],
"yaxis": "y3"
},
{
"hovertemplate": "<b>%{hovertext}</b><br>%{x}<br>Relative growth: %{y}%",
"hovertext": [
"Austria",
"Austria",
"Austria",
"Austria",
"Austria",
"Austria",
"Austria",
"Austria",
"Austria",
"Austria",
"Austria",
"Austria"
],
"legendgroup": "Western Europe",
"line": {
"color": "#636efa",
"dash": "solid"
},
"marker": {
"symbol": "circle"
},
"mode": "markers+lines",
"name": "Western Europe",
"orientation": "v",
"showlegend": false,
"type": "scatter",
"x": [
2011,
2012,
2013,
2014,
2015,
2016,
2017,
2018,
2019,
2020,
2021,
2022
],
"xaxis": "x4",
"y": [
0,
9.090909090909092,
18.181818181818183,
77.27272727272727,
127.27272727272727,
159.0909090909091,
227.27272727272728,
304.54545454545456,
527.2727272727273,
522.7272727272727,
740.9090909090909,
831.8181818181819
],
"yaxis": "y4"
},
{
"hovertemplate": "<b>%{hovertext}</b><br>%{x}<br>Relative growth: %{y}%",
"hovertext": [
"France",
"France",
"France",
"France",
"France",
"France",
"France",
"France",
"France",
"France",
"France",
"France"
],
"legendgroup": "Western Europe",
"line": {
"color": "#636efa",
"dash": "solid"
},
"marker": {
"symbol": "circle"
},
"mode": "markers+lines",
"name": "Western Europe",
"orientation": "v",
"showlegend": false,
"type": "scatter",
"x": [
2011,
2012,
2013,
2014,
2015,
2016,
2017,
2018,
2019,
2020,
2021,
2022
],
"xaxis": "x4",
"y": [
0,
11.11111111111111,
48.717948717948715,
97.43589743589743,
129.9145299145299,
177.77777777777777,
197.43589743589746,
319.6581196581197,
453.8461538461538,
490.59829059829065,
589.7435897435898,
633.3333333333333
],
"yaxis": "y4"
},
{
"hovertemplate": "<b>%{hovertext}</b><br>%{x}<br>Relative growth: %{y}%",
"hovertext": [
"United Kingdom",
"United Kingdom",
"United Kingdom",
"United Kingdom",
"United Kingdom",
"United Kingdom",
"United Kingdom",
"United Kingdom",
"United Kingdom",
"United Kingdom",
"United Kingdom",
"United Kingdom"
],
"legendgroup": "Western Europe",
"line": {
"color": "#636efa",
"dash": "solid"
},
"marker": {
"symbol": "circle"
},
"mode": "markers+lines",
"name": "Western Europe",
"orientation": "v",
"showlegend": false,
"type": "scatter",
"x": [
2011,
2012,
2013,
2014,
2015,
2016,
2017,
2018,
2019,
2020,
2021,
2022
],
"xaxis": "x4",
"y": [
0,
14.87603305785124,
46.28099173553719,
81.81818181818183,
115.15151515151516,
169.6969696969697,
271.900826446281,
406.06060606060606,
569.4214876033059,
756.198347107438,
924.2424242424242,
1069.4214876033059
],
"yaxis": "y4"
},
{
"hovertemplate": "<b>%{hovertext}</b><br>%{x}<br>Relative growth: %{y}%",
"hovertext": [
"Germany",
"Germany",
"Germany",
"Germany",
"Germany",
"Germany",
"Germany",
"Germany",
"Germany",
"Germany",
"Germany",
"Germany"
],
"legendgroup": "Western Europe",
"line": {
"color": "#636efa",
"dash": "solid"
},
"marker": {
"symbol": "circle"
},
"mode": "markers+lines",
"name": "Western Europe",
"orientation": "v",
"showlegend": false,
"type": "scatter",
"x": [
2011,
2012,
2013,
2014,
2015,
2016,
2017,
2018,
2019,
2020,
2021,
2022
],
"xaxis": "x4",
"y": [
0,
39.83739837398374,
56.09756097560976,
121.95121951219512,
152.03252032520325,
196.7479674796748,
270.7317073170732,
391.0569105691057,
551.2195121951219,
637.3983739837398,
883.739837398374,
1026.8292682926829
],
"yaxis": "y4"
},
{
"hovertemplate": "<b>%{hovertext}</b><br>%{x}<br>Relative growth: %{y}%",
"hovertext": [
"Ireland",
"Ireland",
"Ireland",
"Ireland",
"Ireland",
"Ireland",
"Ireland",
"Ireland",
"Ireland",
"Ireland",
"Ireland",
"Ireland"
],
"legendgroup": "Western Europe",
"line": {
"color": "#636efa",
"dash": "solid"
},
"marker": {
"symbol": "circle"
},
"mode": "markers+lines",
"name": "Western Europe",
"orientation": "v",
"showlegend": false,
"type": "scatter",
"x": [
2011,
2012,
2013,
2014,
2015,
2016,
2017,
2018,
2019,
2020,
2021,
2022
],
"xaxis": "x4",
"y": [
0,
23.076923076923077,
69.23076923076923,
138.46153846153845,
107.6923076923077,
246.15384615384616,
407.6923076923077,
453.8461538461538,
546.1538461538462,
792.3076923076924,
1184.6153846153848,
1338.4615384615386
],
"yaxis": "y4"
},
{
"hovertemplate": "<b>%{hovertext}</b><br>%{x}<br>Relative growth: %{y}%",
"hovertext": [
"Luxembourg",
"Luxembourg",
"Luxembourg",
"Luxembourg",
"Luxembourg",
"Luxembourg",
"Luxembourg",
"Luxembourg",
"Luxembourg",
"Luxembourg",
"Luxembourg",
"Luxembourg"
],
"legendgroup": "Western Europe",
"line": {
"color": "#636efa",
"dash": "solid"
},
"marker": {
"symbol": "circle"
},
"mode": "markers+lines",
"name": "Western Europe",
"orientation": "v",
"showlegend": false,
"type": "scatter",
"x": [
2011,
2012,
2013,
2014,
2015,
2016,
2017,
2018,
2019,
2020,
2021,
2022
],
"xaxis": "x4",
"y": [
0,
50,
50,
-50,
300,
350,
550,
650,
800,
1000,
1650,
2450
],
"yaxis": "y4"
},
{
"hovertemplate": "<b>%{hovertext}</b><br>%{x}<br>Relative growth: %{y}%",
"hovertext": [
"Netherlands",
"Netherlands",
"Netherlands",
"Netherlands",
"Netherlands",
"Netherlands",
"Netherlands",
"Netherlands",
"Netherlands",
"Netherlands",
"Netherlands",
"Netherlands"
],
"legendgroup": "Western Europe",
"line": {
"color": "#636efa",
"dash": "solid"
},
"marker": {
"symbol": "circle"
},
"mode": "markers+lines",
"name": "Western Europe",
"orientation": "v",
"showlegend": false,
"type": "scatter",
"x": [
2011,
2012,
2013,
2014,
2015,
2016,
2017,
2018,
2019,
2020,
2021,
2022
],
"xaxis": "x4",
"y": [
0,
-11.11111111111111,
6.944444444444445,
43.05555555555556,
93.05555555555556,
130.55555555555557,
205.55555555555554,
312.5,
466.6666666666667,
552.7777777777777,
634.7222222222223,
809.7222222222222
],
"yaxis": "y4"
},
{
"hovertemplate": "<b>%{hovertext}</b><br>%{x}<br>Relative growth: %{y}%",
"hovertext": [
"Switzerland",
"Switzerland",
"Switzerland",
"Switzerland",
"Switzerland",
"Switzerland",
"Switzerland",
"Switzerland",
"Switzerland",
"Switzerland",
"Switzerland",
"Switzerland"
],
"legendgroup": "Western Europe",
"line": {
"color": "#636efa",
"dash": "solid"
},
"marker": {
"symbol": "circle"
},
"mode": "markers+lines",
"name": "Western Europe",
"orientation": "v",
"showlegend": false,
"type": "scatter",
"x": [
2011,
2012,
2013,
2014,
2015,
2016,
2017,
2018,
2019,
2020,
2021,
2022
],
"xaxis": "x4",
"y": [
0,
35.13513513513514,
45.94594594594595,
100,
100,
156.75675675675674,
318.9189189189189,
427.02702702702703,
529.7297297297297,
610.8108108108108,
843.2432432432431,
1108.1081081081081
],
"yaxis": "y4"
},
{
"hovertemplate": "<b>%{hovertext}</b><br>%{x}<br>Relative growth: %{y}%",
"hovertext": [
"Belgium",
"Belgium",
"Belgium",
"Belgium",
"Belgium",
"Belgium",
"Belgium",
"Belgium",
"Belgium",
"Belgium",
"Belgium",
"Belgium"
],
"legendgroup": "Western Europe",
"line": {
"color": "#636efa",
"dash": "solid"
},
"marker": {
"symbol": "circle"
},
"mode": "markers+lines",
"name": "Western Europe",
"orientation": "v",
"showlegend": false,
"type": "scatter",
"x": [
2011,
2012,
2013,
2014,
2015,
2016,
2017,
2018,
2019,
2020,
2021,
2022
],
"xaxis": "x4",
"y": [
0,
11.76470588235294,
17.647058823529413,
91.17647058823529,
108.8235294117647,
138.23529411764704,
164.70588235294116,
291.1764705882353,
426.4705882352941,
526.4705882352941,
611.7647058823529,
758.8235294117646
],
"yaxis": "y4"
},
{
"hovertemplate": "<b>%{hovertext}</b><br>%{x}<br>Relative growth: %{y}%",
"hovertext": [
"Croatia",
"Croatia",
"Croatia",
"Croatia",
"Croatia",
"Croatia",
"Croatia",
"Croatia",
"Croatia",
"Croatia",
"Croatia",
"Croatia"
],
"legendgroup": "Eastern Europe",
"line": {
"color": "#EF553B",
"dash": "solid"
},
"marker": {
"symbol": "circle"
},
"mode": "markers+lines",
"name": "Eastern Europe",
"orientation": "v",
"showlegend": false,
"type": "scatter",
"x": [
2011,
2012,
2013,
2014,
2015,
2016,
2017,
2018,
2019,
2020,
2021,
2022
],
"xaxis": "x4",
"y": [
0,
100,
500,
700,
900,
600,
900,
1800,
2600,
2800,
3200,
3400
],
"yaxis": "y4"
},
{
"hovertemplate": "<b>%{hovertext}</b><br>%{x}<br>Relative growth: %{y}%",
"hovertext": [
"Romania",
"Romania",
"Romania",
"Romania",
"Romania",
"Romania",
"Romania",
"Romania",
"Romania",
"Romania",
"Romania",
"Romania"
],
"legendgroup": "Eastern Europe",
"line": {
"color": "#EF553B",
"dash": "solid"
},
"marker": {
"symbol": "circle"
},
"mode": "markers+lines",
"name": "Eastern Europe",
"orientation": "v",
"showlegend": false,
"type": "scatter",
"x": [
2011,
2012,
2013,
2014,
2015,
2016,
2017,
2018,
2019,
2020,
2021,
2022
],
"xaxis": "x4",
"y": [
0,
114.28571428571428,
85.71428571428571,
128.57142857142858,
257.14285714285717,
271.42857142857144,
428.57142857142856,
714.2857142857143,
814.2857142857142,
685.7142857142857,
585.7142857142857,
785.7142857142857
],
"yaxis": "y4"
},
{
"hovertemplate": "<b>%{hovertext}</b><br>%{x}<br>Relative growth: %{y}%",
"hovertext": [
"Slovenia",
"Slovenia",
"Slovenia",
"Slovenia",
"Slovenia",
"Slovenia",
"Slovenia",
"Slovenia",
"Slovenia",
"Slovenia",
"Slovenia",
"Slovenia"
],
"legendgroup": "Eastern Europe",
"line": {
"color": "#EF553B",
"dash": "solid"
},
"marker": {
"symbol": "circle"
},
"mode": "markers+lines",
"name": "Eastern Europe",
"orientation": "v",
"showlegend": false,
"type": "scatter",
"x": [
2011,
2012,
2013,
2014,
2015,
2016,
2017,
2018,
2019,
2020,
2021,
2022
],
"xaxis": "x4",
"y": [
0,
0,
42.857142857142854,
71.42857142857143,
142.85714285714286,
285.7142857142857,
214.28571428571428,
571.4285714285714,
671.4285714285714,
342.85714285714283,
585.7142857142857,
471.42857142857144
],
"yaxis": "y4"
},
{
"hovertemplate": "<b>%{hovertext}</b><br>%{x}<br>Relative growth: %{y}%",
"hovertext": [
"Bulgaria",
"Bulgaria",
"Bulgaria",
"Bulgaria",
"Bulgaria",
"Bulgaria",
"Bulgaria",
"Bulgaria",
"Bulgaria",
"Bulgaria",
"Bulgaria",
"Bulgaria"
],
"legendgroup": "Eastern Europe",
"line": {
"color": "#EF553B",
"dash": "solid"
},
"marker": {
"symbol": "circle"
},
"mode": "markers+lines",
"name": "Eastern Europe",
"orientation": "v",
"showlegend": false,
"type": "scatter",
"x": [
2011,
2012,
2013,
2014,
2015,
2016,
2017,
2018,
2019,
2020,
2021,
2022
],
"xaxis": "x4",
"y": [
0,
25,
100,
125,
75,
375,
425,
350,
150,
525,
700,
375
],
"yaxis": "y4"
},
{
"hovertemplate": "<b>%{hovertext}</b><br>%{x}<br>Relative growth: %{y}%",
"hovertext": [
"Hungary",
"Hungary",
"Hungary",
"Hungary",
"Hungary",
"Hungary",
"Hungary",
"Hungary",
"Hungary",
"Hungary",
"Hungary",
"Hungary"
],
"legendgroup": "Eastern Europe",
"line": {
"color": "#EF553B",
"dash": "solid"
},
"marker": {
"symbol": "circle"
},
"mode": "markers+lines",
"name": "Eastern Europe",
"orientation": "v",
"showlegend": false,
"type": "scatter",
"x": [
2011,
2012,
2013,
2014,
2015,
2016,
2017,
2018,
2019,
2020,
2021,
2022
],
"xaxis": "x4",
"y": [
0,
0,
90.9090909090909,
45.45454545454545,
81.81818181818183,
245.45454545454547,
209.0909090909091,
327.2727272727273,
454.54545454545456,
454.54545454545456,
654.5454545454546,
718.1818181818181
],
"yaxis": "y4"
},
{
"hovertemplate": "<b>%{hovertext}</b><br>%{x}<br>Relative growth: %{y}%",
"hovertext": [
"Poland",
"Poland",
"Poland",
"Poland",
"Poland",
"Poland",
"Poland",
"Poland",
"Poland",
"Poland",
"Poland",
"Poland"
],
"legendgroup": "Eastern Europe",
"line": {
"color": "#EF553B",
"dash": "solid"
},
"marker": {
"symbol": "circle"
},
"mode": "markers+lines",
"name": "Eastern Europe",
"orientation": "v",
"showlegend": false,
"type": "scatter",
"x": [
2011,
2012,
2013,
2014,
2015,
2016,
2017,
2018,
2019,
2020,
2021,
2022
],
"xaxis": "x4",
"y": [
0,
82.35294117647058,
117.64705882352942,
235.29411764705884,
329.4117647058823,
382.3529411764706,
476.4705882352941,
547.0588235294118,
711.7647058823529,
964.7058823529411,
1523.5294117647059,
1976.4705882352941
],
"yaxis": "y4"
},
{
"hovertemplate": "<b>%{hovertext}</b><br>%{x}<br>Relative growth: %{y}%",
"hovertext": [
"Czech Republic",
"Czech Republic",
"Czech Republic",
"Czech Republic",
"Czech Republic",
"Czech Republic",
"Czech Republic",
"Czech Republic",
"Czech Republic",
"Czech Republic",
"Czech Republic",
"Czech Republic"
],
"legendgroup": "Eastern Europe",
"line": {
"color": "#EF553B",
"dash": "solid"
},
"marker": {
"symbol": "circle"
},
"mode": "markers+lines",
"name": "Eastern Europe",
"orientation": "v",
"showlegend": false,
"type": "scatter",
"x": [
2011,
2012,
2013,
2014,
2015,
2016,
2017,
2018,
2019,
2020,
2021,
2022
],
"xaxis": "x4",
"y": [
0,
15.384615384615385,
23.076923076923077,
61.53846153846154,
53.84615384615385,
176.9230769230769,
184.6153846153846,
330.7692307692308,
392.30769230769226,
523.0769230769231,
615.3846153846155,
846.1538461538462
],
"yaxis": "y4"
},
{
"hovertemplate": "<b>%{hovertext}</b><br>%{x}<br>Relative growth: %{y}%",
"hovertext": [
"Slovakia",
"Slovakia",
"Slovakia",
"Slovakia",
"Slovakia",
"Slovakia",
"Slovakia",
"Slovakia",
"Slovakia",
"Slovakia",
"Slovakia",
"Slovakia"
],
"legendgroup": "Eastern Europe",
"line": {
"color": "#EF553B",
"dash": "solid"
},
"marker": {
"symbol": "circle"
},
"mode": "markers+lines",
"name": "Eastern Europe",
"orientation": "v",
"showlegend": false,
"type": "scatter",
"x": [
2011,
2012,
2013,
2014,
2015,
2016,
2017,
2018,
2019,
2020,
2021,
2022
],
"xaxis": "x4",
"y": [
0,
-33.33333333333333,
-33.33333333333333,
11.11111111111111,
33.33333333333333,
144.44444444444443,
100,
200,
200,
277.77777777777777,
300,
400
],
"yaxis": "y4"
},
{
"hovertemplate": "<b>%{hovertext}</b><br>%{x}<br>Relative growth: %{y}%",
"hovertext": [
"Portugal",
"Portugal",
"Portugal",
"Portugal",
"Portugal",
"Portugal",
"Portugal",
"Portugal",
"Portugal",
"Portugal",
"Portugal",
"Portugal"
],
"legendgroup": "Southern Europe",
"line": {
"color": "#00cc96",
"dash": "solid"
},
"marker": {
"symbol": "circle"
},
"mode": "markers+lines",
"name": "Southern Europe",
"orientation": "v",
"showlegend": false,
"type": "scatter",
"x": [
2011,
2012,
2013,
2014,
2015,
2016,
2017,
2018,
2019,
2020,
2021,
2022
],
"xaxis": "x4",
"y": [
0,
43.75,
118.75,
156.25,
181.25,
262.5,
393.75,
643.75,
750,
818.75,
1175,
1225
],
"yaxis": "y4"
},
{
"hovertemplate": "<b>%{hovertext}</b><br>%{x}<br>Relative growth: %{y}%",
"hovertext": [
"Greece",
"Greece",
"Greece",
"Greece",
"Greece",
"Greece",
"Greece",
"Greece",
"Greece",
"Greece",
"Greece",
"Greece"
],
"legendgroup": "Southern Europe",
"line": {
"color": "#00cc96",
"dash": "solid"
},
"marker": {
"symbol": "circle"
},
"mode": "markers+lines",
"name": "Southern Europe",
"orientation": "v",
"showlegend": false,
"type": "scatter",
"x": [
2011,
2012,
2013,
2014,
2015,
2016,
2017,
2018,
2019,
2020,
2021,
2022
],
"xaxis": "x4",
"y": [
0,
20,
26.666666666666668,
113.33333333333333,
133.33333333333331,
233.33333333333334,
213.33333333333334,
440.00000000000006,
660,
713.3333333333334,
826.6666666666667,
1106.6666666666667
],
"yaxis": "y4"
},
{
"hovertemplate": "<b>%{hovertext}</b><br>%{x}<br>Relative growth: %{y}%",
"hovertext": [
"Spain",
"Spain",
"Spain",
"Spain",
"Spain",
"Spain",
"Spain",
"Spain",
"Spain",
"Spain",
"Spain",
"Spain"
],
"legendgroup": "Southern Europe",
"line": {
"color": "#00cc96",
"dash": "solid"
},
"marker": {
"symbol": "circle"
},
"mode": "markers+lines",
"name": "Southern Europe",
"orientation": "v",
"showlegend": false,
"type": "scatter",
"x": [
2011,
2012,
2013,
2014,
2015,
2016,
2017,
2018,
2019,
2020,
2021,
2022
],
"xaxis": "x4",
"y": [
0,
-2,
38,
124,
176,
270,
364,
446,
612,
672,
846.0000000000001,
1180
],
"yaxis": "y4"
},
{
"hovertemplate": "<b>%{hovertext}</b><br>%{x}<br>Relative growth: %{y}%",
"hovertext": [
"Italy",
"Italy",
"Italy",
"Italy",
"Italy",
"Italy",
"Italy",
"Italy",
"Italy",
"Italy",
"Italy",
"Italy"
],
"legendgroup": "Southern Europe",
"line": {
"color": "#00cc96",
"dash": "solid"
},
"marker": {
"symbol": "circle"
},
"mode": "markers+lines",
"name": "Southern Europe",
"orientation": "v",
"showlegend": false,
"type": "scatter",
"x": [
2011,
2012,
2013,
2014,
2015,
2016,
2017,
2018,
2019,
2020,
2021,
2022
],
"xaxis": "x4",
"y": [
0,
37.254901960784316,
64.70588235294117,
127.45098039215685,
249.01960784313727,
266.66666666666663,
384.3137254901961,
537.2549019607843,
764.7058823529412,
1019.6078431372548,
1156.862745098039,
1490.1960784313726
],
"yaxis": "y4"
},
{
"hovertemplate": "<b>%{hovertext}</b><br>%{x}<br>Relative growth: %{y}%",
"hovertext": [
"Malta",
"Malta",
"Malta",
"Malta",
"Malta",
"Malta",
"Malta",
"Malta",
"Malta",
"Malta",
"Malta",
"Malta"
],
"legendgroup": "Southern Europe",
"line": {
"color": "#00cc96",
"dash": "solid"
},
"marker": {
"symbol": "circle"
},
"mode": "markers+lines",
"name": "Southern Europe",
"orientation": "v",
"showlegend": false,
"type": "scatter",
"x": [
2011,
2012,
2013,
2014,
2015,
2016,
2017,
2018,
2019,
2020,
2021,
2022
],
"xaxis": "x4",
"y": [
0,
-100,
-100,
-100,
0,
0,
-100,
-100,
500,
100,
600,
900
],
"yaxis": "y4"
},
{
"hovertemplate": "<b>%{hovertext}</b><br>%{x}<br>Relative growth: %{y}%",
"hovertext": [
"Cyprus",
"Cyprus",
"Cyprus",
"Cyprus",
"Cyprus",
"Cyprus",
"Cyprus",
"Cyprus",
"Cyprus",
"Cyprus",
"Cyprus",
"Cyprus"
],
"legendgroup": "Southern Europe",
"line": {
"color": "#00cc96",
"dash": "solid"
},
"marker": {
"symbol": "circle"
},
"mode": "markers+lines",
"name": "Southern Europe",
"orientation": "v",
"showlegend": false,
"type": "scatter",
"x": [
2011,
2012,
2013,
2014,
2015,
2016,
2017,
2018,
2019,
2020,
2021,
2022
],
"xaxis": "x4",
"y": [
0,
-50,
150,
150,
150,
150,
300,
250,
650,
1300,
1700,
2050
],
"yaxis": "y4"
},
{
"hovertemplate": "<b>%{hovertext}</b><br>%{x}<br>Relative growth: %{y}%",
"hovertext": [
"Finland",
"Finland",
"Finland",
"Finland",
"Finland",
"Finland",
"Finland",
"Finland",
"Finland",
"Finland",
"Finland",
"Finland"
],
"legendgroup": "Northern Europe",
"line": {
"color": "#ab63fa",
"dash": "solid"
},
"marker": {
"symbol": "circle"
},
"mode": "markers+lines",
"name": "Northern Europe",
"orientation": "v",
"showlegend": false,
"type": "scatter",
"x": [
2011,
2012,
2013,
2014,
2015,
2016,
2017,
2018,
2019,
2020,
2021,
2022
],
"xaxis": "x4",
"y": [
0,
12.903225806451612,
41.935483870967744,
164.51612903225808,
222.5806451612903,
303.2258064516129,
306.4516129032258,
538.7096774193548,
677.4193548387098,
725.8064516129032,
832.258064516129,
1125.8064516129032
],
"yaxis": "y4"
},
{
"hovertemplate": "<b>%{hovertext}</b><br>%{x}<br>Relative growth: %{y}%",
"hovertext": [
"Sweden",
"Sweden",
"Sweden",
"Sweden",
"Sweden",
"Sweden",
"Sweden",
"Sweden",
"Sweden",
"Sweden",
"Sweden",
"Sweden"
],
"legendgroup": "Northern Europe",
"line": {
"color": "#ab63fa",
"dash": "solid"
},
"marker": {
"symbol": "circle"
},
"mode": "markers+lines",
"name": "Northern Europe",
"orientation": "v",
"showlegend": false,
"type": "scatter",
"x": [
2011,
2012,
2013,
2014,
2015,
2016,
2017,
2018,
2019,
2020,
2021,
2022
],
"xaxis": "x4",
"y": [
0,
47.05882352941176,
73.52941176470588,
144.11764705882354,
232.3529411764706,
400,
585.2941176470588,
582.3529411764706,
1032.3529411764707,
955.8823529411765,
1158.8235294117646,
1400
],
"yaxis": "y4"
},
{
"hovertemplate": "<b>%{hovertext}</b><br>%{x}<br>Relative growth: %{y}%",
"hovertext": [
"Estonia",
"Estonia",
"Estonia",
"Estonia",
"Estonia",
"Estonia",
"Estonia",
"Estonia",
"Estonia",
"Estonia",
"Estonia",
"Estonia"
],
"legendgroup": "Northern Europe",
"line": {
"color": "#ab63fa",
"dash": "solid"
},
"marker": {
"symbol": "circle"
},
"mode": "markers+lines",
"name": "Northern Europe",
"orientation": "v",
"showlegend": false,
"type": "scatter",
"x": [
2011,
2012,
2013,
2014,
2015,
2016,
2017,
2018,
2019,
2020,
2021,
2022
],
"xaxis": "x4",
"y": [
0,
0,
133.33333333333331,
233.33333333333334,
300,
233.33333333333334,
400,
400,
433.3333333333333,
1166.6666666666665,
1400,
1200
],
"yaxis": "y4"
},
{
"hovertemplate": "<b>%{hovertext}</b><br>%{x}<br>Relative growth: %{y}%",
"hovertext": [
"Lithuania",
"Lithuania",
"Lithuania",
"Lithuania",
"Lithuania",
"Lithuania",
"Lithuania",
"Lithuania",
"Lithuania",
"Lithuania",
"Lithuania",
"Lithuania"
],
"legendgroup": "Northern Europe",
"line": {
"color": "#ab63fa",
"dash": "solid"
},
"marker": {
"symbol": "circle"
},
"mode": "markers+lines",
"name": "Northern Europe",
"orientation": "v",
"showlegend": false,
"type": "scatter",
"x": [
2011,
2012,
2013,
2014,
2015,
2016,
2017,
2018,
2019,
2020,
2021,
2022
],
"xaxis": "x4",
"y": [
0,
100,
900,
300,
300,
1200,
1100,
2200,
3700,
3500,
3700,
3700
],
"yaxis": "y4"
},
{
"hovertemplate": "<b>%{hovertext}</b><br>%{x}<br>Relative growth: %{y}%",
"hovertext": [
"Latvia",
"Latvia",
"Latvia",
"Latvia",
"Latvia",
"Latvia",
"Latvia",
"Latvia",
"Latvia",
"Latvia",
"Latvia",
"Latvia"
],
"legendgroup": "Northern Europe",
"line": {
"color": "#ab63fa",
"dash": "solid"
},
"marker": {
"symbol": "circle"
},
"mode": "markers+lines",
"name": "Northern Europe",
"orientation": "v",
"showlegend": false,
"type": "scatter",
"x": [
2011,
2012,
2013,
2014,
2015,
2016,
2017,
2018,
2019,
2020,
2021,
2022
],
"xaxis": "x4",
"y": [
-100,
-100,
0,
-100,
0,
700,
900,
1400,
900,
800,
1200,
1700
],
"yaxis": "y4"
},
{
"hovertemplate": "<b>%{hovertext}</b><br>%{x}<br>Relative growth: %{y}%",
"hovertext": [
"Norway",
"Norway",
"Norway",
"Norway",
"Norway",
"Norway",
"Norway",
"Norway",
"Norway",
"Norway",
"Norway",
"Norway"
],
"legendgroup": "Northern Europe",
"line": {
"color": "#ab63fa",
"dash": "solid"
},
"marker": {
"symbol": "circle"
},
"mode": "markers+lines",
"name": "Northern Europe",
"orientation": "v",
"showlegend": false,
"type": "scatter",
"x": [
2011,
2012,
2013,
2014,
2015,
2016,
2017,
2018,
2019,
2020,
2021,
2022
],
"xaxis": "x4",
"y": [
0,
40,
100,
153.33333333333334,
123.33333333333334,
193.33333333333334,
246.66666666666669,
346.6666666666667,
640,
743.3333333333334,
913.3333333333333,
936.6666666666667
],
"yaxis": "y4"
},
{
"hovertemplate": "<b>%{hovertext}</b><br>%{x}<br>Relative growth: %{y}%",
"hovertext": [
"Denmark",
"Denmark",
"Denmark",
"Denmark",
"Denmark",
"Denmark",
"Denmark",
"Denmark",
"Denmark",
"Denmark",
"Denmark",
"Denmark"
],
"legendgroup": "Northern Europe",
"line": {
"color": "#ab63fa",
"dash": "solid"
},
"marker": {
"symbol": "circle"
},
"mode": "markers+lines",
"name": "Northern Europe",
"orientation": "v",
"showlegend": false,
"type": "scatter",
"x": [
2011,
2012,
2013,
2014,
2015,
2016,
2017,
2018,
2019,
2020,
2021,
2022
],
"xaxis": "x4",
"y": [
0,
-5.714285714285714,
14.285714285714285,
68.57142857142857,
94.28571428571428,
111.42857142857143,
188.57142857142856,
457.1428571428571,
568.5714285714286,
600,
737.1428571428571,
880.0000000000001
],
"yaxis": "y4"
}
],
"layout": {
"annotations": [
{
"font": {
"size": 16
},
"showarrow": false,
"text": "placeholder",
"x": 0.225,
"xanchor": "center",
"xref": "paper",
"y": 1,
"yanchor": "bottom",
"yref": "paper"
},
{
"font": {
"size": 16
},
"showarrow": false,
"text": "Cumulative number of co-publications",
"x": 0.775,
"xanchor": "center",
"xref": "paper",
"y": 1,
"yanchor": "bottom",
"yref": "paper"
},
{
"font": {
"size": 16
},
"showarrow": false,
"text": "Yearly output of co-publications",
"x": 0.225,
"xanchor": "center",
"xref": "paper",
"y": 0.375,
"yanchor": "bottom",
"yref": "paper"
},
{
"font": {
"size": 16
},
"showarrow": false,
"text": "Relative growth of co-publications<br>(baseline: 2011)",
"x": 0.775,
"xanchor": "center",
"xref": "paper",
"y": 0.375,
"yanchor": "bottom",
"yref": "paper"
}
],
"template": {
"data": {
"bar": [
{
"error_x": {
"color": "#2a3f5f"
},
"error_y": {
"color": "#2a3f5f"
},
"marker": {
"line": {
"color": "#E5ECF6",
"width": 0.5
},
"pattern": {
"fillmode": "overlay",
"size": 10,
"solidity": 0.2
}
},
"type": "bar"
}
],
"barpolar": [
{
"marker": {
"line": {
"color": "#E5ECF6",
"width": 0.5
},
"pattern": {
"fillmode": "overlay",
"size": 10,
"solidity": 0.2
}
},
"type": "barpolar"
}
],
"carpet": [
{
"aaxis": {
"endlinecolor": "#2a3f5f",
"gridcolor": "white",
"linecolor": "white",
"minorgridcolor": "white",
"startlinecolor": "#2a3f5f"
},
"baxis": {
"endlinecolor": "#2a3f5f",
"gridcolor": "white",
"linecolor": "white",
"minorgridcolor": "white",
"startlinecolor": "#2a3f5f"
},
"type": "carpet"
}
],
"choropleth": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "choropleth"
}
],
"contour": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "contour"
}
],
"contourcarpet": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "contourcarpet"
}
],
"heatmap": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "heatmap"
}
],
"heatmapgl": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "heatmapgl"
}
],
"histogram": [
{
"marker": {
"pattern": {
"fillmode": "overlay",
"size": 10,
"solidity": 0.2
}
},
"type": "histogram"
}
],
"histogram2d": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "histogram2d"
}
],
"histogram2dcontour": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "histogram2dcontour"
}
],
"mesh3d": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "mesh3d"
}
],
"parcoords": [
{
"line": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "parcoords"
}
],
"pie": [
{
"automargin": true,
"type": "pie"
}
],
"scatter": [
{
"fillpattern": {
"fillmode": "overlay",
"size": 10,
"solidity": 0.2
},
"type": "scatter"
}
],
"scatter3d": [
{
"line": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatter3d"
}
],
"scattercarpet": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattercarpet"
}
],
"scattergeo": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattergeo"
}
],
"scattergl": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattergl"
}
],
"scattermapbox": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattermapbox"
}
],
"scatterpolar": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterpolar"
}
],
"scatterpolargl": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterpolargl"
}
],
"scatterternary": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterternary"
}
],
"surface": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "surface"
}
],
"table": [
{
"cells": {
"fill": {
"color": "#EBF0F8"
},
"line": {
"color": "white"
}
},
"header": {
"fill": {
"color": "#C8D4E3"
},
"line": {
"color": "white"
}
},
"type": "table"
}
]
},
"layout": {
"annotationdefaults": {
"arrowcolor": "#2a3f5f",
"arrowhead": 0,
"arrowwidth": 1
},
"autotypenumbers": "strict",
"coloraxis": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"colorscale": {
"diverging": [
[
0,
"#8e0152"
],
[
0.1,
"#c51b7d"
],
[
0.2,
"#de77ae"
],
[
0.3,
"#f1b6da"
],
[
0.4,
"#fde0ef"
],
[
0.5,
"#f7f7f7"
],
[
0.6,
"#e6f5d0"
],
[
0.7,
"#b8e186"
],
[
0.8,
"#7fbc41"
],
[
0.9,
"#4d9221"
],
[
1,
"#276419"
]
],
"sequential": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"sequentialminus": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
]
},
"colorway": [
"#636efa",
"#EF553B",
"#00cc96",
"#ab63fa",
"#FFA15A",
"#19d3f3",
"#FF6692",
"#B6E880",
"#FF97FF",
"#FECB52"
],
"font": {
"color": "#2a3f5f"
},
"geo": {
"bgcolor": "white",
"lakecolor": "white",
"landcolor": "#E5ECF6",
"showlakes": true,
"showland": true,
"subunitcolor": "white"
},
"hoverlabel": {
"align": "left"
},
"hovermode": "closest",
"mapbox": {
"style": "light"
},
"paper_bgcolor": "white",
"plot_bgcolor": "#E5ECF6",
"polar": {
"angularaxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
},
"bgcolor": "#E5ECF6",
"radialaxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
}
},
"scene": {
"xaxis": {
"backgroundcolor": "#E5ECF6",
"gridcolor": "white",
"gridwidth": 2,
"linecolor": "white",
"showbackground": true,
"ticks": "",
"zerolinecolor": "white"
},
"yaxis": {
"backgroundcolor": "#E5ECF6",
"gridcolor": "white",
"gridwidth": 2,
"linecolor": "white",
"showbackground": true,
"ticks": "",
"zerolinecolor": "white"
},
"zaxis": {
"backgroundcolor": "#E5ECF6",
"gridcolor": "white",
"gridwidth": 2,
"linecolor": "white",
"showbackground": true,
"ticks": "",
"zerolinecolor": "white"
}
},
"shapedefaults": {
"line": {
"color": "#2a3f5f"
}
},
"ternary": {
"aaxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
},
"baxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
},
"bgcolor": "#E5ECF6",
"caxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
}
},
"title": {
"x": 0.05
},
"xaxis": {
"automargin": true,
"gridcolor": "white",
"linecolor": "white",
"ticks": "",
"title": {
"standoff": 15
},
"zerolinecolor": "white",
"zerolinewidth": 2
},
"yaxis": {
"automargin": true,
"gridcolor": "white",
"linecolor": "white",
"ticks": "",
"title": {
"standoff": 15
},
"zerolinecolor": "white",
"zerolinewidth": 2
}
}
},
"xaxis": {
"anchor": "y",
"domain": [
0,
0.45
],
"linecolor": "black",
"linewidth": 1,
"mirror": true,
"showgrid": true,
"showline": true,
"ticks": "outside"
},
"xaxis2": {
"anchor": "y2",
"domain": [
0.55,
1
],
"linecolor": "black",
"linewidth": 1,
"mirror": true,
"showgrid": true,
"showline": true,
"ticks": "outside"
},
"xaxis3": {
"anchor": "y3",
"domain": [
0,
0.45
],
"linecolor": "black",
"linewidth": 1,
"mirror": true,
"showgrid": true,
"showline": true,
"ticks": "outside"
},
"xaxis4": {
"anchor": "y4",
"domain": [
0.55,
1
],
"linecolor": "black",
"linewidth": 1,
"mirror": true,
"showgrid": true,
"showline": true,
"ticks": "outside"
},
"yaxis": {
"anchor": "x",
"domain": [
0.625,
1
],
"linecolor": "black",
"linewidth": 1,
"mirror": true,
"showgrid": true,
"showline": true,
"ticks": "outside"
},
"yaxis2": {
"anchor": "x2",
"domain": [
0.625,
1
],
"linecolor": "black",
"linewidth": 1,
"mirror": true,
"showgrid": true,
"showline": true,
"ticks": "outside"
},
"yaxis3": {
"anchor": "x3",
"domain": [
0,
0.375
],
"linecolor": "black",
"linewidth": 1,
"mirror": true,
"showgrid": true,
"showline": true,
"ticks": "outside"
},
"yaxis4": {
"anchor": "x4",
"domain": [
0,
0.375
],
"linecolor": "black",
"linewidth": 1,
"mirror": true,
"showgrid": true,
"showline": true,
"ticks": "outside"
}
}
},
"text/html": [
"<div> <div id=\"9ed97a02-c7c5-49c5-971d-da53b41a1318\" class=\"plotly-graph-div\" style=\"height:525px; width:100%;\"></div> <script type=\"text/javascript\"> require([\"plotly\"], function(Plotly) { window.PLOTLYENV=window.PLOTLYENV || {}; if (document.getElementById(\"9ed97a02-c7c5-49c5-971d-da53b41a1318\")) { Plotly.newPlot( \"9ed97a02-c7c5-49c5-971d-da53b41a1318\", [{\"fillpattern\":{\"shape\":\"\"},\"hovertemplate\":\"<b>%{hovertext}</b><br>%{x}<br>Co-publications: %{y}\",\"hovertext\":[\"Austria\",\"Austria\",\"Austria\",\"Austria\",\"Austria\",\"Austria\",\"Austria\",\"Austria\",\"Austria\",\"Austria\",\"Austria\",\"Austria\"],\"legendgroup\":\"Western Europe\",\"line\":{\"color\":\"#636efa\"},\"marker\":{\"symbol\":\"circle\"},\"mode\":\"lines\",\"name\":\"Western Europe\",\"orientation\":\"v\",\"showlegend\":true,\"stackgroup\":\"1\",\"x\":[2011,2012,2013,2014,2015,2016,2017,2018,2019,2020,2021,2022],\"xaxis\":\"x2\",\"y\":[22.0,46.0,72.0,111.0,161.0,218.0,290.0,379.0,517.0,654.0,839.0,1044.0],\"yaxis\":\"y2\",\"type\":\"scatter\"},{\"fillpattern\":{\"shape\":\"\"},\"hovertemplate\":\"<b>%{hovertext}</b><br>%{x}<br>Co-publications: %{y}\",\"hovertext\":[\"France\",\"France\",\"France\",\"France\",\"France\",\"France\",\"France\",\"France\",\"France\",\"France\",\"France\",\"France\"],\"legendgroup\":\"Western Europe\",\"line\":{\"color\":\"#636efa\"},\"marker\":{\"symbol\":\"circle\"},\"mode\":\"lines\",\"name\":\"Western Europe\",\"orientation\":\"v\",\"showlegend\":false,\"stackgroup\":\"1\",\"x\":[2011,2012,2013,2014,2015,2016,2017,2018,2019,2020,2021,2022],\"xaxis\":\"x2\",\"y\":[117.0,247.0,421.0,652.0,921.0,1246.0,1594.0,2085.0,2733.0,3424.0,4231.0,5089.0],\"yaxis\":\"y2\",\"type\":\"scatter\"},{\"fillpattern\":{\"shape\":\"\"},\"hovertemplate\":\"<b>%{hovertext}</b><br>%{x}<br>Co-publications: %{y}\",\"hovertext\":[\"United Kingdom\",\"United Kingdom\",\"United Kingdom\",\"United Kingdom\",\"United Kingdom\",\"United Kingdom\",\"United Kingdom\",\"United Kingdom\",\"United Kingdom\",\"United Kingdom\",\"United Kingdom\",\"United Kingdom\"],\"legendgroup\":\"Western Europe\",\"line\":{\"color\":\"#636efa\"},\"marker\":{\"symbol\":\"circle\"},\"mode\":\"lines\",\"name\":\"Western Europe\",\"orientation\":\"v\",\"showlegend\":false,\"stackgroup\":\"1\",\"x\":[2011,2012,2013,2014,2015,2016,2017,2018,2019,2020,2021,2022],\"xaxis\":\"x2\",\"y\":[363.0,780.0,1311.0,1971.0,2752.0,3731.0,5081.0,6918.0,9348.0,12456.0,16174.0,20419.0],\"yaxis\":\"y2\",\"type\":\"scatter\"},{\"fillpattern\":{\"shape\":\"\"},\"hovertemplate\":\"<b>%{hovertext}</b><br>%{x}<br>Co-publications: %{y}\",\"hovertext\":[\"Germany\",\"Germany\",\"Germany\",\"Germany\",\"Germany\",\"Germany\",\"Germany\",\"Germany\",\"Germany\",\"Germany\",\"Germany\",\"Germany\"],\"legendgroup\":\"Western Europe\",\"line\":{\"color\":\"#636efa\"},\"marker\":{\"symbol\":\"circle\"},\"mode\":\"lines\",\"name\":\"Western Europe\",\"orientation\":\"v\",\"showlegend\":false,\"stackgroup\":\"1\",\"x\":[2011,2012,2013,2014,2015,2016,2017,2018,2019,2020,2021,2022],\"xaxis\":\"x2\",\"y\":[123.0,295.0,487.0,760.0,1070.0,1435.0,1891.0,2495.0,3296.0,4203.0,5413.0,6799.0],\"yaxis\":\"y2\",\"type\":\"scatter\"},{\"fillpattern\":{\"shape\":\"\"},\"hovertemplate\":\"<b>%{hovertext}</b><br>%{x}<br>Co-publications: %{y}\",\"hovertext\":[\"Ireland\",\"Ireland\",\"Ireland\",\"Ireland\",\"Ireland\",\"Ireland\",\"Ireland\",\"Ireland\",\"Ireland\",\"Ireland\",\"Ireland\",\"Ireland\"],\"legendgroup\":\"Western Europe\",\"line\":{\"color\":\"#636efa\"},\"marker\":{\"symbol\":\"circle\"},\"mode\":\"lines\",\"name\":\"Western Europe\",\"orientation\":\"v\",\"showlegend\":false,\"stackgroup\":\"1\",\"x\":[2011,2012,2013,2014,2015,2016,2017,2018,2019,2020,2021,2022],\"xaxis\":\"x2\",\"y\":[13.0,29.0,51.0,82.0,109.0,154.0,220.0,292.0,376.0,492.0,659.0,846.0],\"yaxis\":\"y2\",\"type\":\"scatter\"},{\"fillpattern
" \n",
"var gd = document.getElementById('9ed97a02-c7c5-49c5-971d-da53b41a1318');\n",
"var x = new MutationObserver(function (mutations, observer) {{\n",
" var display = window.getComputedStyle(gd).display;\n",
" if (!display || display === 'none') {{\n",
" console.log([gd, 'removed!']);\n",
" Plotly.purge(gd);\n",
" observer.disconnect();\n",
" }}\n",
"}});\n",
"\n",
"// Listen for the removal of the full notebook cells\n",
"var notebookContainer = gd.closest('#notebook-container');\n",
"if (notebookContainer) {{\n",
" x.observe(notebookContainer, {childList: true});\n",
"}}\n",
"\n",
"// Listen for the clearing of the current output cell\n",
"var outputEl = gd.closest('.output');\n",
"if (outputEl) {{\n",
" x.observe(outputEl, {childList: true});\n",
"}}\n",
"\n",
" }) }; }); </script> </div>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"from plotly.subplots import make_subplots\n",
"import plotly.graph_objects as go\n",
"\n",
"figsuper = make_subplots(rows=2, cols=2, subplot_titles=[\"placeholder\",\"Cumulative number of co-publications\",\n",
" \"Yearly output of co-publications\",\"Relative growth of co-publications<br>(baseline: 2011)\"])\n",
"\n",
"fig = px.area(data.sort_values(ascending=True, by='Publication Year'), y=record_col+\"_cumsum\",\n",
" x='Publication Year',\n",
" color=\"Eurovoc_Class\",\n",
" line_group=\"Country\",\n",
" labels={\n",
" record_col: 'Number of co-publications',\n",
" \"Eurovoc_Class\": \"Region\"\n",
" },\n",
" title=\"Cumulative number of co-publications\",hover_name= \"Country\")\n",
"fig.update_traces(hovertemplate='<b>%{hovertext}</b><br>%{x}<br>Co-publications: %{y}')\n",
"\n",
"for trace in list(fig.select_traces()):\n",
" figsuper.add_trace(trace,\n",
" row=1, col=2\n",
" )\n",
"\n",
"\n",
"fig = px.line(data.sort_values(ascending=True, by='Publication Year'),\n",
" y=record_col,\n",
" x='Publication Year',\n",
" color=\"Eurovoc_Class\",\n",
" line_group=\"Country\",\n",
" markers=True,\n",
" labels={\n",
" record_col: 'Number of co-publications',\n",
" \"Eurovoc_Class\": \"Region\"\n",
" },\n",
" title=\"Yearly output of co-publications\",hover_name= \"Country\")\n",
"fig.update_traces(hovertemplate='<b>%{hovertext}</b><br>%{x}<br>Co-publications: %{y}')\n",
"\n",
"for trace in list(fig.select_traces()):\n",
" trace.showlegend=False\n",
" figsuper.add_trace(trace,\n",
" row=2, col=1\n",
" )\n",
"\n",
"fig = px.line(data.sort_values(ascending=True, by='Publication Year'),\n",
" y=record_col+\"_relative_growth\",\n",
" x='Publication Year',\n",
" color=\"Eurovoc_Class\",line_group=\"Country\",markers=True,\n",
" labels={\n",
" record_col+\"_relative_growth\": 'Relative growth of co-publications (%)',\"Eurovoc_Class\": \"Region\"\n",
" },\n",
" title=\"Relative growth of co-publications<br>(baseline: 2011)\", template='plotly',hover_name= \"Country\")\n",
"fig.update_traces(hovertemplate='<b>%{hovertext}</b><br>%{x}<br>Relative growth: %{y}%')\n",
"fig.add_shape(\n",
" # Rectangle with reference to the plot\n",
" type=\"rect\",\n",
" xref=\"paper\",\n",
" yref=\"paper\",\n",
" x0=0,\n",
" y0=0,\n",
" x1=1.0,\n",
" y1=1.0,\n",
" line=dict(\n",
" color=\"black\",\n",
" width=0.5,\n",
" )\n",
" )\n",
"\n",
"for trace in list(fig.select_traces()):\n",
" trace.showlegend=False\n",
" figsuper.add_trace(trace,\n",
" row=2, col=2\n",
" )\n",
"\n",
"figsuper.update_yaxes(\n",
" showgrid=True,showline=True, linewidth=1, linecolor='black', mirror=True,\n",
" ticks=\"outside\")\n",
"figsuper.update_xaxes(\n",
" showgrid=True,showline=True, linewidth=1, linecolor='black', mirror=True,\n",
" ticks=\"outside\")\n",
"figsuper.update_layout({'template':\"plotly\"})\n",
"figsuper.show(config= dict(displayModeBar = False))"
]
},
{
"cell_type": "code",
"execution_count": 373,
"id": "e4c50e14",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th>Publication Year</th>\n",
" <th>2011</th>\n",
" <th>2012</th>\n",
" <th>2013</th>\n",
" <th>2014</th>\n",
" <th>2015</th>\n",
" <th>2016</th>\n",
" <th>2017</th>\n",
" <th>2018</th>\n",
" <th>2019</th>\n",
" <th>2020</th>\n",
" <th>2021</th>\n",
" <th>2022</th>\n",
" </tr>\n",
" <tr>\n",
" <th>Country</th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>Austria</th>\n",
" <td>22</td>\n",
" <td>24</td>\n",
" <td>26</td>\n",
" <td>39</td>\n",
" <td>50</td>\n",
" <td>57</td>\n",
" <td>72</td>\n",
" <td>89</td>\n",
" <td>138</td>\n",
" <td>137</td>\n",
" <td>185</td>\n",
" <td>205</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Belgium</th>\n",
" <td>34</td>\n",
" <td>38</td>\n",
" <td>40</td>\n",
" <td>65</td>\n",
" <td>71</td>\n",
" <td>81</td>\n",
" <td>90</td>\n",
" <td>133</td>\n",
" <td>179</td>\n",
" <td>213</td>\n",
" <td>242</td>\n",
" <td>292</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Bulgaria</th>\n",
" <td>4</td>\n",
" <td>5</td>\n",
" <td>8</td>\n",
" <td>9</td>\n",
" <td>7</td>\n",
" <td>19</td>\n",
" <td>21</td>\n",
" <td>18</td>\n",
" <td>10</td>\n",
" <td>25</td>\n",
" <td>32</td>\n",
" <td>19</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Croatia</th>\n",
" <td>1</td>\n",
" <td>2</td>\n",
" <td>6</td>\n",
" <td>8</td>\n",
" <td>10</td>\n",
" <td>7</td>\n",
" <td>10</td>\n",
" <td>19</td>\n",
" <td>27</td>\n",
" <td>29</td>\n",
" <td>33</td>\n",
" <td>35</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Cyprus</th>\n",
" <td>2</td>\n",
" <td>1</td>\n",
" <td>5</td>\n",
" <td>5</td>\n",
" <td>5</td>\n",
" <td>5</td>\n",
" <td>8</td>\n",
" <td>7</td>\n",
" <td>15</td>\n",
" <td>28</td>\n",
" <td>36</td>\n",
" <td>43</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Czech Republic</th>\n",
" <td>13</td>\n",
" <td>15</td>\n",
" <td>16</td>\n",
" <td>21</td>\n",
" <td>20</td>\n",
" <td>36</td>\n",
" <td>37</td>\n",
" <td>56</td>\n",
" <td>64</td>\n",
" <td>81</td>\n",
" <td>93</td>\n",
" <td>123</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Denmark</th>\n",
" <td>35</td>\n",
" <td>33</td>\n",
" <td>40</td>\n",
" <td>59</td>\n",
" <td>68</td>\n",
" <td>74</td>\n",
" <td>101</td>\n",
" <td>195</td>\n",
" <td>234</td>\n",
" <td>245</td>\n",
" <td>293</td>\n",
" <td>343</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Estonia</th>\n",
" <td>3</td>\n",
" <td>3</td>\n",
" <td>7</td>\n",
" <td>10</td>\n",
" <td>12</td>\n",
" <td>10</td>\n",
" <td>15</td>\n",
" <td>15</td>\n",
" <td>16</td>\n",
" <td>38</td>\n",
" <td>45</td>\n",
" <td>39</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Finland</th>\n",
" <td>31</td>\n",
" <td>35</td>\n",
" <td>44</td>\n",
" <td>82</td>\n",
" <td>100</td>\n",
" <td>125</td>\n",
" <td>126</td>\n",
" <td>198</td>\n",
" <td>241</td>\n",
" <td>256</td>\n",
" <td>289</td>\n",
" <td>380</td>\n",
" </tr>\n",
" <tr>\n",
" <th>France</th>\n",
" <td>117</td>\n",
" <td>130</td>\n",
" <td>174</td>\n",
" <td>231</td>\n",
" <td>269</td>\n",
" <td>325</td>\n",
" <td>348</td>\n",
" <td>491</td>\n",
" <td>648</td>\n",
" <td>691</td>\n",
" <td>807</td>\n",
" <td>858</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Germany</th>\n",
" <td>123</td>\n",
" <td>172</td>\n",
" <td>192</td>\n",
" <td>273</td>\n",
" <td>310</td>\n",
" <td>365</td>\n",
" <td>456</td>\n",
" <td>604</td>\n",
" <td>801</td>\n",
" <td>907</td>\n",
" <td>1210</td>\n",
" <td>1386</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Greece</th>\n",
" <td>15</td>\n",
" <td>18</td>\n",
" <td>19</td>\n",
" <td>32</td>\n",
" <td>35</td>\n",
" <td>50</td>\n",
" <td>47</td>\n",
" <td>81</td>\n",
" <td>114</td>\n",
" <td>122</td>\n",
" <td>139</td>\n",
" <td>181</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Hungary</th>\n",
" <td>11</td>\n",
" <td>11</td>\n",
" <td>21</td>\n",
" <td>16</td>\n",
" <td>20</td>\n",
" <td>38</td>\n",
" <td>34</td>\n",
" <td>47</td>\n",
" <td>61</td>\n",
" <td>61</td>\n",
" <td>83</td>\n",
" <td>90</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Ireland</th>\n",
" <td>13</td>\n",
" <td>16</td>\n",
" <td>22</td>\n",
" <td>31</td>\n",
" <td>27</td>\n",
" <td>45</td>\n",
" <td>66</td>\n",
" <td>72</td>\n",
" <td>84</td>\n",
" <td>116</td>\n",
" <td>167</td>\n",
" <td>187</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Italy</th>\n",
" <td>51</td>\n",
" <td>70</td>\n",
" <td>84</td>\n",
" <td>116</td>\n",
" <td>178</td>\n",
" <td>187</td>\n",
" <td>247</td>\n",
" <td>325</td>\n",
" <td>441</td>\n",
" <td>571</td>\n",
" <td>641</td>\n",
" <td>811</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Latvia</th>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>1</td>\n",
" <td>8</td>\n",
" <td>10</td>\n",
" <td>15</td>\n",
" <td>10</td>\n",
" <td>9</td>\n",
" <td>13</td>\n",
" <td>18</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Lithuania</th>\n",
" <td>1</td>\n",
" <td>2</td>\n",
" <td>10</td>\n",
" <td>4</td>\n",
" <td>4</td>\n",
" <td>13</td>\n",
" <td>12</td>\n",
" <td>23</td>\n",
" <td>38</td>\n",
" <td>36</td>\n",
" <td>38</td>\n",
" <td>38</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Luxembourg</th>\n",
" <td>2</td>\n",
" <td>3</td>\n",
" <td>3</td>\n",
" <td>1</td>\n",
" <td>8</td>\n",
" <td>9</td>\n",
" <td>13</td>\n",
" <td>15</td>\n",
" <td>18</td>\n",
" <td>22</td>\n",
" <td>35</td>\n",
" <td>51</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Malta</th>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>1</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>6</td>\n",
" <td>2</td>\n",
" <td>7</td>\n",
" <td>10</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Netherlands</th>\n",
" <td>72</td>\n",
" <td>64</td>\n",
" <td>77</td>\n",
" <td>103</td>\n",
" <td>139</td>\n",
" <td>166</td>\n",
" <td>220</td>\n",
" <td>297</td>\n",
" <td>408</td>\n",
" <td>470</td>\n",
" <td>529</td>\n",
" <td>655</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Norway</th>\n",
" <td>30</td>\n",
" <td>42</td>\n",
" <td>60</td>\n",
" <td>76</td>\n",
" <td>67</td>\n",
" <td>88</td>\n",
" <td>104</td>\n",
" <td>134</td>\n",
" <td>222</td>\n",
" <td>253</td>\n",
" <td>304</td>\n",
" <td>311</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Poland</th>\n",
" <td>17</td>\n",
" <td>31</td>\n",
" <td>37</td>\n",
" <td>57</td>\n",
" <td>73</td>\n",
" <td>82</td>\n",
" <td>98</td>\n",
" <td>110</td>\n",
" <td>138</td>\n",
" <td>181</td>\n",
" <td>276</td>\n",
" <td>353</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Portugal</th>\n",
" <td>16</td>\n",
" <td>23</td>\n",
" <td>35</td>\n",
" <td>41</td>\n",
" <td>45</td>\n",
" <td>58</td>\n",
" <td>79</td>\n",
" <td>119</td>\n",
" <td>136</td>\n",
" <td>147</td>\n",
" <td>204</td>\n",
" <td>212</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Romania</th>\n",
" <td>7</td>\n",
" <td>15</td>\n",
" <td>13</td>\n",
" <td>16</td>\n",
" <td>25</td>\n",
" <td>26</td>\n",
" <td>37</td>\n",
" <td>57</td>\n",
" <td>64</td>\n",
" <td>55</td>\n",
" <td>48</td>\n",
" <td>62</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Slovakia</th>\n",
" <td>9</td>\n",
" <td>6</td>\n",
" <td>6</td>\n",
" <td>10</td>\n",
" <td>12</td>\n",
" <td>22</td>\n",
" <td>18</td>\n",
" <td>27</td>\n",
" <td>27</td>\n",
" <td>34</td>\n",
" <td>36</td>\n",
" <td>45</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Slovenia</th>\n",
" <td>7</td>\n",
" <td>7</td>\n",
" <td>10</td>\n",
" <td>12</td>\n",
" <td>17</td>\n",
" <td>27</td>\n",
" <td>22</td>\n",
" <td>47</td>\n",
" <td>54</td>\n",
" <td>31</td>\n",
" <td>48</td>\n",
" <td>40</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Spain</th>\n",
" <td>50</td>\n",
" <td>49</td>\n",
" <td>69</td>\n",
" <td>112</td>\n",
" <td>138</td>\n",
" <td>185</td>\n",
" <td>232</td>\n",
" <td>273</td>\n",
" <td>356</td>\n",
" <td>386</td>\n",
" <td>473</td>\n",
" <td>640</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Sweden</th>\n",
" <td>34</td>\n",
" <td>50</td>\n",
" <td>59</td>\n",
" <td>83</td>\n",
" <td>113</td>\n",
" <td>170</td>\n",
" <td>233</td>\n",
" <td>232</td>\n",
" <td>385</td>\n",
" <td>359</td>\n",
" <td>428</td>\n",
" <td>510</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Switzerland</th>\n",
" <td>37</td>\n",
" <td>50</td>\n",
" <td>54</td>\n",
" <td>74</td>\n",
" <td>74</td>\n",
" <td>95</td>\n",
" <td>155</td>\n",
" <td>195</td>\n",
" <td>233</td>\n",
" <td>263</td>\n",
" <td>349</td>\n",
" <td>447</td>\n",
" </tr>\n",
" <tr>\n",
" <th>United Kingdom</th>\n",
" <td>363</td>\n",
" <td>417</td>\n",
" <td>531</td>\n",
" <td>660</td>\n",
" <td>781</td>\n",
" <td>979</td>\n",
" <td>1350</td>\n",
" <td>1837</td>\n",
" <td>2430</td>\n",
" <td>3108</td>\n",
" <td>3718</td>\n",
" <td>4245</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
"Publication Year 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 \n",
"Country \n",
"Austria 22 24 26 39 50 57 72 89 138 137 \\\n",
"Belgium 34 38 40 65 71 81 90 133 179 213 \n",
"Bulgaria 4 5 8 9 7 19 21 18 10 25 \n",
"Croatia 1 2 6 8 10 7 10 19 27 29 \n",
"Cyprus 2 1 5 5 5 5 8 7 15 28 \n",
"Czech Republic 13 15 16 21 20 36 37 56 64 81 \n",
"Denmark 35 33 40 59 68 74 101 195 234 245 \n",
"Estonia 3 3 7 10 12 10 15 15 16 38 \n",
"Finland 31 35 44 82 100 125 126 198 241 256 \n",
"France 117 130 174 231 269 325 348 491 648 691 \n",
"Germany 123 172 192 273 310 365 456 604 801 907 \n",
"Greece 15 18 19 32 35 50 47 81 114 122 \n",
"Hungary 11 11 21 16 20 38 34 47 61 61 \n",
"Ireland 13 16 22 31 27 45 66 72 84 116 \n",
"Italy 51 70 84 116 178 187 247 325 441 571 \n",
"Latvia 0 0 1 0 1 8 10 15 10 9 \n",
"Lithuania 1 2 10 4 4 13 12 23 38 36 \n",
"Luxembourg 2 3 3 1 8 9 13 15 18 22 \n",
"Malta 1 0 0 0 1 1 0 0 6 2 \n",
"Netherlands 72 64 77 103 139 166 220 297 408 470 \n",
"Norway 30 42 60 76 67 88 104 134 222 253 \n",
"Poland 17 31 37 57 73 82 98 110 138 181 \n",
"Portugal 16 23 35 41 45 58 79 119 136 147 \n",
"Romania 7 15 13 16 25 26 37 57 64 55 \n",
"Slovakia 9 6 6 10 12 22 18 27 27 34 \n",
"Slovenia 7 7 10 12 17 27 22 47 54 31 \n",
"Spain 50 49 69 112 138 185 232 273 356 386 \n",
"Sweden 34 50 59 83 113 170 233 232 385 359 \n",
"Switzerland 37 50 54 74 74 95 155 195 233 263 \n",
"United Kingdom 363 417 531 660 781 979 1350 1837 2430 3108 \n",
"\n",
"Publication Year 2021 2022 \n",
"Country \n",
"Austria 185 205 \n",
"Belgium 242 292 \n",
"Bulgaria 32 19 \n",
"Croatia 33 35 \n",
"Cyprus 36 43 \n",
"Czech Republic 93 123 \n",
"Denmark 293 343 \n",
"Estonia 45 39 \n",
"Finland 289 380 \n",
"France 807 858 \n",
"Germany 1210 1386 \n",
"Greece 139 181 \n",
"Hungary 83 90 \n",
"Ireland 167 187 \n",
"Italy 641 811 \n",
"Latvia 13 18 \n",
"Lithuania 38 38 \n",
"Luxembourg 35 51 \n",
"Malta 7 10 \n",
"Netherlands 529 655 \n",
"Norway 304 311 \n",
"Poland 276 353 \n",
"Portugal 204 212 \n",
"Romania 48 62 \n",
"Slovakia 36 45 \n",
"Slovenia 48 40 \n",
"Spain 473 640 \n",
"Sweden 428 510 \n",
"Switzerland 349 447 \n",
"United Kingdom 3718 4245 "
]
},
"execution_count": 373,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"year_pivot = pd.crosstab(collab_year['Country'], collab_year['Publication Year'], values=collab_year[record_col], aggfunc='nunique').fillna(0).astype(int)\n",
"year_pivot"
]
},
{
"cell_type": "code",
"execution_count": 374,
"id": "e4e82db7",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABNIAAASyCAYAAABz+8aJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzddVRUWxvH8S/SKqiIid3dea0rdit2Xru7EVSwuzuwUVQsbMXExi6wUBCTxisN7x8o1xFU4FXOAM9nrVkX9zlz+M1zJw579tlbIyoqKgohhBBCCCGEEEIIIcRPpVE6gBBCCCGEEEIIIYQQyYF0pAkhhBBCCCGEEEIIEQ/SkSaEEEIIIYQQQgghRDxIR5oQQgghhBBCCCGEEPEgHWlCCCGEEEIIIYQQQsSDdKQJIYQQQgghhBBCCBEP0pEmhBBCCCGEEEIIIUQ8SEeaEEIIIYQQQgghhBDxIB1pQgghhBBCCCGEEELEg5bSAYQQQgghhBBCCCFSujCvF0pH+OO0jQsoHeGPkxFpQgghhBBCCCGEEELEg3SkCSGEEEIIIYQQQggRD9KRJoQQQgghhBBCCCFEPMgcaUIIIYQQQgghhBB/WmSE0gnEbyAj0oQQQgghhBBCCCGEiAcZkSZiCQgIVDpCsmJoaCA1SwSpW8JJzRJH6pZwUrPEkbolnNQscaRuCSc1SxxDQwMCAz4pHSNZMTBMLzVLBAPD9EpHECLeNKKioqKUDiHUi7aOidIRkpWwUE+pWSJI3RIuLNQTHd1cSsdIdkJDXqOrl1vpGMlKSLCH1CwRQoI90NPLo3SMZCU42B19/bxKx0h2goJeYZiugNIxkpWAf19IzRIh4N8XGBkUVjpGsuIT+BRjwyJKx0h2vAKeKB0hSYR9eKp0hD9OO2vKf8+QSzuFEEIIIYQQQgghhIgHubRTCCGEEEIIIYQQ4k+LilQ6gfgNZESaEEIIIYQQQgghhBDxIB1pQgghhBBCCCGEEELEg3SkJcCnT58oW7Ysf/31F2FhYb/12GFhYWzevPmn++zbt4+iRYv+1t+rTjQ0NOjfrzu3bp7C1+cJri6XWTDfCgOD/1Zw+fvvGjie3suH9w/xcL+Nnd06ChRIvZMUx6dm3xo2tA9hoZ7kzZu6J6yPT91y5szO1i3Leff2Ad5eLhw/toty5UoqmFpZGhoajBo1gIcPL+Lv9wznGyfp3KmNyj7du7fn9q3TBPg/w8XlEhaTRqKpqalQYvWgq6vLp8AXhAR7qNy8vVxi9qlQoQwnT+7G28sFtxfOTJs2AW1tbQVTK+tnNcubN1es9m9v69YtVDq+ImrXrkZwsPsPbxYWIwH4+++/OHVqN2/f3uflS2d27lyTqj9DAXr16sTNm6fw8nrM7duODBjQQ2V7kyamXLx4EF9fV549u8q8eZNJly6tQmmVlTNndtw971CzVlWV9kaN6nLuwgHefnjAg8cXmWQxMtZ7WImSRbHfb8Mrj1s8eX6VNevmkyWrcVLGV0xi63b/0QUC/n0R5+3ew/NJ/TCSVM6c2XHzuEmNmlVU2qv9VYkjJ2x55Xmbe4/OM3uuJenTp1PZZ9LkUfgEPo11Gzq8T1I+hCSjoaFBz96dOH/5EC/f3Mb5riMzZpuT3uC/uuQvkIcddmt47u6Mq9s15i+yUtkOYD55JF4BT2LdhgzrndQPSYhkQeZIS4AjR46QOXNmPn78yKlTp2jatOlvO/bhw4eZPXs2PXv2/OE+TZs2pVatWr/td6qbsWMHM816PAsXrebMmUsUKVwAK6txlCxZlCZNO/NX9UocO2rLIYcT9PhnGOnSpcVi0gjOnztAufKmeHv7Kv0QktyvavatwoULMGOGuUJJ1cuv6pY+fTrOONoTEhrK4CETCA4OwWLSCI4d3UX5CvV49+6D0g8hyVlNHcuYMYOwtl6I8807NG5sypYty4mMjMRu90GGDu3DooXW2NsfZqL5TLIYGzFlyljKlClBx079lY6vmJIli6Ktrc0/PYfx4sWrmPaIiOj5MfLnz8Oxo7Zcu3aLrl0HUaxYYaytx2GUKQNDh01SKraiflazt28/UKt2y1j3GTjwH9q3a8HmzbuSMqrauH37AbVrt4rVbmU1jooVy2Bnd5Dq1Stx+PB2HBxO0rPncNKlS4u5+XDOnLGnYsUGqfIztGfPTqxaNZdVqzbh4HCKGjUqs2iRNXp6uixdup6WLRuxc+caLly4SrduQ9DR0WHixGEcO1aRunXbEhERofRDSDImJjnYf3AzGTMaqrSb1qvJrj3rsN2xD6up8ylSpABTrceRLXsWRgyzACBLVmMOH9nOa8+3DBwwDn19PaynT8B+vw2mdcwIDw9X4iElif+nbl07D0RXR0flflWqVmD2XEtsNtom2WNIaiYm2dl7YBMZvqtZsWKF2HdwM1evONP7n+HkyJkNq+njyZs/N106DIjZr3SZ4ly8cJXpVqpfrHi4eyZJ/qQ2bGQ/Jk0eyYqlG7lw/goFC+XD3HIExYoXoV3rXhhmMGC/w1Y+fPBi6MAJGGfJzNRp48iTLxcdzfrGHKd06eI4XbjKdGvVur12f5PUDynli5Q50lIC6UhLAHt7e2rVqsWbN2/YtWvXb+1Ii4qK+uU+enp66Onp/bbfqU40NDQYN3Yw69dvx9JyDgBnzlzE28cX2x2rqVihDGPHDeHx4yd06jQgpl6XL9/A7cUNevTowOLFa5V8CEkuPjW7eeseAGnSpGHjhsV4e/uSNq2+krEVF5+6NWpsSubMmShd5u+YTrObN+9y7eox6tSpjp3dQSUfQpLT19dj2LC+LF9hw/wFKwE4e/YSFcqXYciQ3uzZ64DFpJGcOn2ezl0Gxtzv9u0H3L7tSL16tXB0vKhUfEWVLVuCsLAw9u07SmhoaKztY8cMIvDTv7Rt14ewsDCOnzjL589BLFkynbnzVuDhkfpOYH9Vs+vXb6v8u3z50rRv14IpU+Zx+fKNpIqpVgIDP8WqS7NmDTA1rUnnzgN59syNOXMsefz4KV26DIr5DL1yxZlnz67SvXt7lixZp0R0Rf3zTwcuXbrOmDFWAJw7d4kiRQowcOA/LF26HguLkbi4PKNlyx4xVyJcunSdhw8v0KNHezZtSvkdtxoaGnTuasbMmeZoaGjE2j56zCDu3H7AkEETADh39hKZMxsxbsIQzCfM4PPnIJo1q49xlszUq9sWNzd3APz9A9h/cAtVq1XgktP1JH1MSeF31O3e3Ucq9zEwSM/GzUs5fuwMSxalvHNeDQ0NOnVpw7SZE+KsWbuOLYmKiqJ758H8++9nADQ1tVi8bDq5cufk9ZfPy9Kli2O73R7nG3eSMr4iNDQ0GD6yH1s22THjSwfYhXOX8fXxY8PmJZQrX4o6dWuQySgjprXa4OMT/YXJmzfvsLPfQJWqFbh+7RYApUoXx3aHPTdv3FXs8QiRnMilnfH0/Plz7t69S40aNWjYsCHXrl3Dzc0tZrupqSnLly9Xuc+3bREREcyfP586depQqlQpGjduzM6dO4HoSzbNzaNHChUtWpRr166xfPlyunXrxqhRo6hQoQLTp0+PdWnnkydPGDBgAJUrV6ZUqVLUq1cPGxubP12KP8LQ0IAdO+zZtWu/Srur6zMAChTMx/Xrt1m2bINKp+Pbt+/x9w+gYIF8SRlXLcSnZl+NHj2QrFmNmTdvRVJGVEvxqVtbs2bs23dEZeTZ+/cfyZe/UqrrRAMICQmlTp3WLFmieuIeGhaKnp4u2bJlIXPmTBw96qiy/eEjVz5+9KZJk3pJGVetlC1TElfX53F2CAHUb1CH48ccVaYL2Lf/CJqamjRoUCepYqqVX9Xse0uXzODx46csXbb+DydLPvT0dFm82JqjRx3Zv/8oADdu3GbFio1xfIYGptrLO3V1dQkI+KTS5uPjh5FRRiB6BMzp0xdUXp8fPnjh6vqMJk1MkzKqYkqVLsaSpTPYuXM//fuNibV96OCJ9Os7WqUtNDSMNGnSoK0d/X29np4uAAGB/9Xax9sPACOjTH8oubJ+R92+N27CELJkycyYUVP+SGallSxVjIVLpmG38wAD+42LtV1
"text/plain": [
"<Figure size 1500x1500 with 2 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"f, ax = plt.subplots(figsize=(15, 15))\n",
"g = sns.heatmap(year_pivot, annot=True, fmt=\"d\", linewidths=.5, ax=ax)\n",
"g.set(xlabel=\"\", ylabel=\"\")\n",
"for i in range(year_pivot.shape[0]+1):\n",
" ax.axhline(i, color='white', lw=10)"
]
},
{
"cell_type": "code",
"execution_count": 375,
"id": "78bb0b4e",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th>Publication Year</th>\n",
" <th>2011</th>\n",
" <th>2012</th>\n",
" <th>2013</th>\n",
" <th>2014</th>\n",
" <th>2015</th>\n",
" <th>2016</th>\n",
" <th>2017</th>\n",
" <th>2018</th>\n",
" <th>2019</th>\n",
" <th>2020</th>\n",
" <th>2021</th>\n",
" <th>2022</th>\n",
" </tr>\n",
" <tr>\n",
" <th>Country</th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>Austria</th>\n",
" <td>1.962533</td>\n",
" <td>1.801802</td>\n",
" <td>1.557819</td>\n",
" <td>1.736420</td>\n",
" <td>1.865672</td>\n",
" <td>1.699970</td>\n",
" <td>1.689744</td>\n",
" <td>1.552958</td>\n",
" <td>1.816267</td>\n",
" <td>1.543488</td>\n",
" <td>1.712804</td>\n",
" <td>1.623248</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Belgium</th>\n",
" <td>3.033006</td>\n",
" <td>2.852853</td>\n",
" <td>2.396645</td>\n",
" <td>2.894034</td>\n",
" <td>2.649254</td>\n",
" <td>2.415747</td>\n",
" <td>2.112180</td>\n",
" <td>2.320712</td>\n",
" <td>2.355883</td>\n",
" <td>2.399730</td>\n",
" <td>2.240533</td>\n",
" <td>2.312139</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Bulgaria</th>\n",
" <td>0.356824</td>\n",
" <td>0.375375</td>\n",
" <td>0.479329</td>\n",
" <td>0.400712</td>\n",
" <td>0.261194</td>\n",
" <td>0.566657</td>\n",
" <td>0.492842</td>\n",
" <td>0.314081</td>\n",
" <td>0.131614</td>\n",
" <td>0.281658</td>\n",
" <td>0.296269</td>\n",
" <td>0.150447</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Croatia</th>\n",
" <td>0.089206</td>\n",
" <td>0.150150</td>\n",
" <td>0.359497</td>\n",
" <td>0.356189</td>\n",
" <td>0.373134</td>\n",
" <td>0.208768</td>\n",
" <td>0.234687</td>\n",
" <td>0.331530</td>\n",
" <td>0.355357</td>\n",
" <td>0.326724</td>\n",
" <td>0.305527</td>\n",
" <td>0.277140</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Cyprus</th>\n",
" <td>0.178412</td>\n",
" <td>0.075075</td>\n",
" <td>0.299581</td>\n",
" <td>0.222618</td>\n",
" <td>0.186567</td>\n",
" <td>0.149120</td>\n",
" <td>0.187749</td>\n",
" <td>0.122143</td>\n",
" <td>0.197420</td>\n",
" <td>0.315457</td>\n",
" <td>0.333302</td>\n",
" <td>0.340486</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Czech Republic</th>\n",
" <td>1.159679</td>\n",
" <td>1.126126</td>\n",
" <td>0.958658</td>\n",
" <td>0.934996</td>\n",
" <td>0.746269</td>\n",
" <td>1.073665</td>\n",
" <td>0.868341</td>\n",
" <td>0.977142</td>\n",
" <td>0.842327</td>\n",
" <td>0.912573</td>\n",
" <td>0.861031</td>\n",
" <td>0.973949</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Denmark</th>\n",
" <td>3.122212</td>\n",
" <td>2.477477</td>\n",
" <td>2.396645</td>\n",
" <td>2.626892</td>\n",
" <td>2.537313</td>\n",
" <td>2.206979</td>\n",
" <td>2.370336</td>\n",
" <td>3.402548</td>\n",
" <td>3.079758</td>\n",
" <td>2.760252</td>\n",
" <td>2.712712</td>\n",
" <td>2.715971</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Estonia</th>\n",
" <td>0.267618</td>\n",
" <td>0.225225</td>\n",
" <td>0.419413</td>\n",
" <td>0.445236</td>\n",
" <td>0.447761</td>\n",
" <td>0.298240</td>\n",
" <td>0.352030</td>\n",
" <td>0.261734</td>\n",
" <td>0.210582</td>\n",
" <td>0.428121</td>\n",
" <td>0.416628</td>\n",
" <td>0.308813</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Finland</th>\n",
" <td>2.765388</td>\n",
" <td>2.627628</td>\n",
" <td>2.636309</td>\n",
" <td>3.650935</td>\n",
" <td>3.731343</td>\n",
" <td>3.728005</td>\n",
" <td>2.957052</td>\n",
" <td>3.454894</td>\n",
" <td>3.171887</td>\n",
" <td>2.884182</td>\n",
" <td>2.675678</td>\n",
" <td>3.008948</td>\n",
" </tr>\n",
" <tr>\n",
" <th>France</th>\n",
" <td>10.437110</td>\n",
" <td>9.759760</td>\n",
" <td>10.425404</td>\n",
" <td>10.284951</td>\n",
" <td>10.037313</td>\n",
" <td>9.692812</td>\n",
" <td>8.167097</td>\n",
" <td>8.567440</td>\n",
" <td>8.528560</td>\n",
" <td>7.785038</td>\n",
" <td>7.471530</td>\n",
" <td>6.793887</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Germany</th>\n",
" <td>10.972346</td>\n",
" <td>12.912913</td>\n",
" <td>11.503895</td>\n",
" <td>12.154942</td>\n",
" <td>11.567164</td>\n",
" <td>10.885774</td>\n",
" <td>10.701713</td>\n",
" <td>10.539173</td>\n",
" <td>10.542248</td>\n",
" <td>10.218567</td>\n",
" <td>11.202666</td>\n",
" <td>10.974741</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Greece</th>\n",
" <td>1.338091</td>\n",
" <td>1.351351</td>\n",
" <td>1.138406</td>\n",
" <td>1.424755</td>\n",
" <td>1.305970</td>\n",
" <td>1.491202</td>\n",
" <td>1.103027</td>\n",
" <td>1.413366</td>\n",
" <td>1.500395</td>\n",
" <td>1.374493</td>\n",
" <td>1.286918</td>\n",
" <td>1.433209</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Hungary</th>\n",
" <td>0.981267</td>\n",
" <td>0.825826</td>\n",
" <td>1.258238</td>\n",
" <td>0.712378</td>\n",
" <td>0.746269</td>\n",
" <td>1.133313</td>\n",
" <td>0.797935</td>\n",
" <td>0.820101</td>\n",
" <td>0.802843</td>\n",
" <td>0.687247</td>\n",
" <td>0.768447</td>\n",
" <td>0.712645</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Ireland</th>\n",
" <td>1.159679</td>\n",
" <td>1.201201</td>\n",
" <td>1.318155</td>\n",
" <td>1.380232</td>\n",
" <td>1.007463</td>\n",
" <td>1.342082</td>\n",
" <td>1.548932</td>\n",
" <td>1.256325</td>\n",
" <td>1.105554</td>\n",
" <td>1.306895</td>\n",
" <td>1.546153</td>\n",
" <td>1.480719</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Italy</th>\n",
" <td>4.549509</td>\n",
" <td>5.255255</td>\n",
" <td>5.032954</td>\n",
" <td>5.164737</td>\n",
" <td>6.641791</td>\n",
" <td>5.577095</td>\n",
" <td>5.796761</td>\n",
" <td>5.670913</td>\n",
" <td>5.804159</td>\n",
" <td>6.433078</td>\n",
" <td>5.934636</td>\n",
" <td>6.421728</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Latvia</th>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>0.059916</td>\n",
" <td>0.000000</td>\n",
" <td>0.037313</td>\n",
" <td>0.238592</td>\n",
" <td>0.234687</td>\n",
" <td>0.261734</td>\n",
" <td>0.131614</td>\n",
" <td>0.101397</td>\n",
" <td>0.120359</td>\n",
" <td>0.142529</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Lithuania</th>\n",
" <td>0.089206</td>\n",
" <td>0.150150</td>\n",
" <td>0.599161</td>\n",
" <td>0.178094</td>\n",
" <td>0.149254</td>\n",
" <td>0.387712</td>\n",
" <td>0.281624</td>\n",
" <td>0.401326</td>\n",
" <td>0.500132</td>\n",
" <td>0.405588</td>\n",
" <td>0.351819</td>\n",
" <td>0.300895</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Luxembourg</th>\n",
" <td>0.178412</td>\n",
" <td>0.225225</td>\n",
" <td>0.179748</td>\n",
" <td>0.044524</td>\n",
" <td>0.298507</td>\n",
" <td>0.268416</td>\n",
" <td>0.305093</td>\n",
" <td>0.261734</td>\n",
" <td>0.236904</td>\n",
" <td>0.247859</td>\n",
" <td>0.324044</td>\n",
" <td>0.403832</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Malta</th>\n",
" <td>0.089206</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>0.037313</td>\n",
" <td>0.029824</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>0.078968</td>\n",
" <td>0.022533</td>\n",
" <td>0.064809</td>\n",
" <td>0.079183</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Netherlands</th>\n",
" <td>6.422837</td>\n",
" <td>4.804805</td>\n",
" <td>4.613541</td>\n",
" <td>4.585931</td>\n",
" <td>5.186567</td>\n",
" <td>4.950790</td>\n",
" <td>5.163107</td>\n",
" <td>5.182342</td>\n",
" <td>5.369834</td>\n",
" <td>5.295178</td>\n",
" <td>4.897695</td>\n",
" <td>5.186476</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Norway</th>\n",
" <td>2.676182</td>\n",
" <td>3.153153</td>\n",
" <td>3.594967</td>\n",
" <td>3.383793</td>\n",
" <td>2.500000</td>\n",
" <td>2.624515</td>\n",
" <td>2.440742</td>\n",
" <td>2.338161</td>\n",
" <td>2.921822</td>\n",
" <td>2.850383</td>\n",
" <td>2.814554</td>\n",
" <td>2.462586</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Poland</th>\n",
" <td>1.516503</td>\n",
" <td>2.327327</td>\n",
" <td>2.216896</td>\n",
" <td>2.537845</td>\n",
" <td>2.723881</td>\n",
" <td>2.445571</td>\n",
" <td>2.299930</td>\n",
" <td>1.919386</td>\n",
" <td>1.816267</td>\n",
" <td>2.039207</td>\n",
" <td>2.555319</td>\n",
" <td>2.795154</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Portugal</th>\n",
" <td>1.427297</td>\n",
" <td>1.726727</td>\n",
" <td>2.097064</td>\n",
" <td>1.825467</td>\n",
" <td>1.679104</td>\n",
" <td>1.729794</td>\n",
" <td>1.854025</td>\n",
" <td>2.076426</td>\n",
" <td>1.789945</td>\n",
" <td>1.656151</td>\n",
" <td>1.888714</td>\n",
" <td>1.678676</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Romania</th>\n",
" <td>0.624442</td>\n",
" <td>1.126126</td>\n",
" <td>0.778910</td>\n",
" <td>0.712378</td>\n",
" <td>0.932836</td>\n",
" <td>0.775425</td>\n",
" <td>0.868341</td>\n",
" <td>0.994591</td>\n",
" <td>0.842327</td>\n",
" <td>0.619648</td>\n",
" <td>0.444403</td>\n",
" <td>0.490934</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Slovakia</th>\n",
" <td>0.802855</td>\n",
" <td>0.450450</td>\n",
" <td>0.359497</td>\n",
" <td>0.445236</td>\n",
" <td>0.447761</td>\n",
" <td>0.656129</td>\n",
" <td>0.422436</td>\n",
" <td>0.471122</td>\n",
" <td>0.355357</td>\n",
" <td>0.383055</td>\n",
" <td>0.333302</td>\n",
" <td>0.356323</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Slovenia</th>\n",
" <td>0.624442</td>\n",
" <td>0.525526</td>\n",
" <td>0.599161</td>\n",
" <td>0.534283</td>\n",
" <td>0.634328</td>\n",
" <td>0.805249</td>\n",
" <td>0.516311</td>\n",
" <td>0.820101</td>\n",
" <td>0.710713</td>\n",
" <td>0.349256</td>\n",
" <td>0.444403</td>\n",
" <td>0.316731</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Spain</th>\n",
" <td>4.460303</td>\n",
" <td>3.678679</td>\n",
" <td>4.134212</td>\n",
" <td>4.986643</td>\n",
" <td>5.149254</td>\n",
" <td>5.517447</td>\n",
" <td>5.444731</td>\n",
" <td>4.763567</td>\n",
" <td>4.685444</td>\n",
" <td>4.348806</td>\n",
" <td>4.379224</td>\n",
" <td>5.067701</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Sweden</th>\n",
" <td>3.033006</td>\n",
" <td>3.753754</td>\n",
" <td>3.535051</td>\n",
" <td>3.695459</td>\n",
" <td>4.216418</td>\n",
" <td>5.070086</td>\n",
" <td>5.468200</td>\n",
" <td>4.048159</td>\n",
" <td>5.067123</td>\n",
" <td>4.044615</td>\n",
" <td>3.962596</td>\n",
" <td>4.038324</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Switzerland</th>\n",
" <td>3.300624</td>\n",
" <td>3.753754</td>\n",
" <td>3.235470</td>\n",
" <td>3.294746</td>\n",
" <td>2.761194</td>\n",
" <td>2.833284</td>\n",
" <td>3.637644</td>\n",
" <td>3.402548</td>\n",
" <td>3.066596</td>\n",
" <td>2.963046</td>\n",
" <td>3.231182</td>\n",
" <td>3.539473</td>\n",
" </tr>\n",
" <tr>\n",
" <th>United Kingdom</th>\n",
" <td>32.381802</td>\n",
" <td>31.306306</td>\n",
" <td>31.815458</td>\n",
" <td>29.385574</td>\n",
" <td>29.141791</td>\n",
" <td>29.197733</td>\n",
" <td>31.682704</td>\n",
" <td>32.053743</td>\n",
" <td>31.982101</td>\n",
" <td>35.015773</td>\n",
" <td>34.422739</td>\n",
" <td>33.613113</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
"Publication Year 2011 2012 2013 2014 2015 \n",
"Country \n",
"Austria 1.962533 1.801802 1.557819 1.736420 1.865672 \\\n",
"Belgium 3.033006 2.852853 2.396645 2.894034 2.649254 \n",
"Bulgaria 0.356824 0.375375 0.479329 0.400712 0.261194 \n",
"Croatia 0.089206 0.150150 0.359497 0.356189 0.373134 \n",
"Cyprus 0.178412 0.075075 0.299581 0.222618 0.186567 \n",
"Czech Republic 1.159679 1.126126 0.958658 0.934996 0.746269 \n",
"Denmark 3.122212 2.477477 2.396645 2.626892 2.537313 \n",
"Estonia 0.267618 0.225225 0.419413 0.445236 0.447761 \n",
"Finland 2.765388 2.627628 2.636309 3.650935 3.731343 \n",
"France 10.437110 9.759760 10.425404 10.284951 10.037313 \n",
"Germany 10.972346 12.912913 11.503895 12.154942 11.567164 \n",
"Greece 1.338091 1.351351 1.138406 1.424755 1.305970 \n",
"Hungary 0.981267 0.825826 1.258238 0.712378 0.746269 \n",
"Ireland 1.159679 1.201201 1.318155 1.380232 1.007463 \n",
"Italy 4.549509 5.255255 5.032954 5.164737 6.641791 \n",
"Latvia 0.000000 0.000000 0.059916 0.000000 0.037313 \n",
"Lithuania 0.089206 0.150150 0.599161 0.178094 0.149254 \n",
"Luxembourg 0.178412 0.225225 0.179748 0.044524 0.298507 \n",
"Malta 0.089206 0.000000 0.000000 0.000000 0.037313 \n",
"Netherlands 6.422837 4.804805 4.613541 4.585931 5.186567 \n",
"Norway 2.676182 3.153153 3.594967 3.383793 2.500000 \n",
"Poland 1.516503 2.327327 2.216896 2.537845 2.723881 \n",
"Portugal 1.427297 1.726727 2.097064 1.825467 1.679104 \n",
"Romania 0.624442 1.126126 0.778910 0.712378 0.932836 \n",
"Slovakia 0.802855 0.450450 0.359497 0.445236 0.447761 \n",
"Slovenia 0.624442 0.525526 0.599161 0.534283 0.634328 \n",
"Spain 4.460303 3.678679 4.134212 4.986643 5.149254 \n",
"Sweden 3.033006 3.753754 3.535051 3.695459 4.216418 \n",
"Switzerland 3.300624 3.753754 3.235470 3.294746 2.761194 \n",
"United Kingdom 32.381802 31.306306 31.815458 29.385574 29.141791 \n",
"\n",
"Publication Year 2016 2017 2018 2019 2020 \n",
"Country \n",
"Austria 1.699970 1.689744 1.552958 1.816267 1.543488 \\\n",
"Belgium 2.415747 2.112180 2.320712 2.355883 2.399730 \n",
"Bulgaria 0.566657 0.492842 0.314081 0.131614 0.281658 \n",
"Croatia 0.208768 0.234687 0.331530 0.355357 0.326724 \n",
"Cyprus 0.149120 0.187749 0.122143 0.197420 0.315457 \n",
"Czech Republic 1.073665 0.868341 0.977142 0.842327 0.912573 \n",
"Denmark 2.206979 2.370336 3.402548 3.079758 2.760252 \n",
"Estonia 0.298240 0.352030 0.261734 0.210582 0.428121 \n",
"Finland 3.728005 2.957052 3.454894 3.171887 2.884182 \n",
"France 9.692812 8.167097 8.567440 8.528560 7.785038 \n",
"Germany 10.885774 10.701713 10.539173 10.542248 10.218567 \n",
"Greece 1.491202 1.103027 1.413366 1.500395 1.374493 \n",
"Hungary 1.133313 0.797935 0.820101 0.802843 0.687247 \n",
"Ireland 1.342082 1.548932 1.256325 1.105554 1.306895 \n",
"Italy 5.577095 5.796761 5.670913 5.804159 6.433078 \n",
"Latvia 0.238592 0.234687 0.261734 0.131614 0.101397 \n",
"Lithuania 0.387712 0.281624 0.401326 0.500132 0.405588 \n",
"Luxembourg 0.268416 0.305093 0.261734 0.236904 0.247859 \n",
"Malta 0.029824 0.000000 0.000000 0.078968 0.022533 \n",
"Netherlands 4.950790 5.163107 5.182342 5.369834 5.295178 \n",
"Norway 2.624515 2.440742 2.338161 2.921822 2.850383 \n",
"Poland 2.445571 2.299930 1.919386 1.816267 2.039207 \n",
"Portugal 1.729794 1.854025 2.076426 1.789945 1.656151 \n",
"Romania 0.775425 0.868341 0.994591 0.842327 0.619648 \n",
"Slovakia 0.656129 0.422436 0.471122 0.355357 0.383055 \n",
"Slovenia 0.805249 0.516311 0.820101 0.710713 0.349256 \n",
"Spain 5.517447 5.444731 4.763567 4.685444 4.348806 \n",
"Sweden 5.070086 5.468200 4.048159 5.067123 4.044615 \n",
"Switzerland 2.833284 3.637644 3.402548 3.066596 2.963046 \n",
"United Kingdom 29.197733 31.682704 32.053743 31.982101 35.015773 \n",
"\n",
"Publication Year 2021 2022 \n",
"Country \n",
"Austria 1.712804 1.623248 \n",
"Belgium 2.240533 2.312139 \n",
"Bulgaria 0.296269 0.150447 \n",
"Croatia 0.305527 0.277140 \n",
"Cyprus 0.333302 0.340486 \n",
"Czech Republic 0.861031 0.973949 \n",
"Denmark 2.712712 2.715971 \n",
"Estonia 0.416628 0.308813 \n",
"Finland 2.675678 3.008948 \n",
"France 7.471530 6.793887 \n",
"Germany 11.202666 10.974741 \n",
"Greece 1.286918 1.433209 \n",
"Hungary 0.768447 0.712645 \n",
"Ireland 1.546153 1.480719 \n",
"Italy 5.934636 6.421728 \n",
"Latvia 0.120359 0.142529 \n",
"Lithuania 0.351819 0.300895 \n",
"Luxembourg 0.324044 0.403832 \n",
"Malta 0.064809 0.079183 \n",
"Netherlands 4.897695 5.186476 \n",
"Norway 2.814554 2.462586 \n",
"Poland 2.555319 2.795154 \n",
"Portugal 1.888714 1.678676 \n",
"Romania 0.444403 0.490934 \n",
"Slovakia 0.333302 0.356323 \n",
"Slovenia 0.444403 0.316731 \n",
"Spain 4.379224 5.067701 \n",
"Sweden 3.962596 4.038324 \n",
"Switzerland 3.231182 3.539473 \n",
"United Kingdom 34.422739 33.613113 "
]
},
"execution_count": 375,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"year_percent_pivot = pd.crosstab(collab_year['Country'], collab_year['Publication Year'], values=collab_year[record_col], aggfunc='nunique', normalize='columns').fillna(0)*100\n",
"year_percent_pivot"
]
},
{
"cell_type": "code",
"execution_count": 376,
"id": "42dc8be7",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABRgAAASyCAYAAADd6IchAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzddVxW1wPH8Q8wMCZ299TZhe10brNjts4uFFsUW8FW7O7O2d29TbG7ZndtJoKbIAq/P4Bn0vCIvyvyfb9evDbuvee58fWccznPDQs/Pz8/RERERERERERERMxgafQGiIiIiIiIiIiISMylAUYRERERERERERExmwYYRURERERERERExGwaYBQRERERERERERGzaYBRREREREREREREzKYBRhERERERERERETGbBhhFRERERERERETEbBpgFBEREREREREREbNpgFFERERERERERETMpgFGERERERERERERMdtXRm+AxAyeHq/JlqGI0ZvxRbhx/yS2CRNEqYynx2uyZCj8ibYo9rl1/5RZGWRKZ/eJtij2ufvwjFkZfJO+0Cfaotjn9oPTaosMZm5bpHoQfcytB8og+pibgfrk6GNun6z+IHrovNR4Oi81nvoC45lTD4LTFYwiIiIiIiIiIiJiNg0wioiIiIiIiIiIiNk0wCgiIiIiIiIiIiJm0wCjiIiIiIiIiIiImE0DjCIiIiIiIiIiImI2DTCKiIiIiIiIiIiI2TTAKCIiIiIiIiIiImbTAKOIiIiIiIiIiIiYTQOMIiIiIiIiIiIiYjYNMIqIiIiIiIiIiIjZNMAYBa9fv6ZAgQJ89913+Pj4ROtn+/j4sGjRonCXWb9+PTly5IjW9RrNwsKC5vYN+O3QJm49PMXxc3sY6tqXBLZfR1i2dt1q/HF0C3f+OsvB49v4pVGtCMsULW7HH0e3cO3ucabOGkX8+PGCzG/TrhmrN843d3divDRpU3Hj7gm+K10swmWtrKxwdHLg2Old3Hl0ht8ObqRWnSoRlitWvBAHj27lxt0TTJs1OkQGDu2asWbjArP3IaZLmzY1t++folQkMgCoUOlH9vy2lodPLnDxykFGjnYJcUyDK16iEIePb+f2/VPMmD0mxPJt2zdn/aZF5u5CjJYmbSpu3jsZ4fFv2Lg2zzyuhfnToHHtMMsWK14It2PbuHnvJNNDOf4O7ZuxduPCaNmfmCgq7ZCNjTUug7pz9tLv3PvrHPsOrKdW3aoRlvs2exZ27lvNrfunWLZyJilSJAsyv1KVshw6vh1Ly9h5mqR6YDxlYDz1x8bTeanxolIPvsmSkRee10P8HDq2Ldxy1apX4PT5/dy4exzXUc4h+t7hI/sxaerwj9qPmEz9gbHUF0RN7DxzNtO2bdtIliwZnp6e7NmzJ1o/e+vWrYwcOTLcZapWrYqbm1u0rtdonbu1YeTYAezd/Qctm3RmxtQF1G9UiwVLp4RbrlqNisyYN5Y/9h+iZZPOHHbzHzAM7w9La2tr5i6axMnjZ2jfugeFixbEqVcH0/wEtl/TrWc7hg0aH237F5OkTZeaNRsWkChxwkgt37tfF/oPcGLNqs00a9SBY0dPMXfhJH6uUTHMMtbW1sxbNIkTx8/QrnUPihQtQPcQGbRn2KBxH70/MVG6dKlZt2lhpDOoVKUsy1fN4uqVGzSs58CkCbNp3LQuk6aOCLOMtbU18xdP5vix0zjYO1GkWEF69O5omm9rm4DuvToweOCYj96fmCZtutSs3Ri5479n1+9UKlc/xM/lP6/x4P4j9u76PdRygcf/xLEztG3dPaAO/Hf8E9h+jVPPDgwdNDa6ditGiWo7NGfBRDp2sWft6s00bdiejet3MGnqCNq0bRpuuemzx/D0yXNaNe9C0mRJGD6qv2mepaUlAwb3YMTQCfj6+n7U/sREqgfGUwbGU39sPJ2XGi+q9SBfvtwA1KzWjIpl65t+HOy7h1kmWfKkzJo7jrVrtuDYqT91f6lOsxa/mOZnyJiOxk3qMtp16sftTAyl/sBY6gui7iujNyAmWbduHd9//z2PHj1i5cqVVK0a8VUSkeXn5xfhMnHjxiVu3LjRtk6jWVhY0LlbG5YsXMWIIRMAOPD7EV6+cGfOwokUsMvLuTMXQy3bf6ATWzbuZGD/UQD8vs+NJEkS0cfZkY3rtoda5tscWUiTNhXDB03g5Ut3Fs9fQe36P8MQ//mdu7bh0MFjXDj3Z/Tv7GfMwsKCBo1qMXh4HywsIl+ucdO6rFuzlXGjpwNw8I+j5C+Yh9YOTdm6eXeoZbIHZDBs0HhevnQn2/xvqFu/OgTk36WrA4cOHuN8LMygYePaDB3RB4sohDBiZH82b9xJ5w59ATh44ChWVla0bd+cePHi8uaNV4gy2XNkJW3a1AwZNI6XL9z5dt5y6tavzjD8B9a7dHPA7cDRWJVBYB0YMqJvpOvA8+cvef78ZZBpDu2bkT1HVqpUaBBiXqDsObKSJm0qhg72P/4Ls2ehbv3qDB/y3/GPrXUgqu1Qvvy5qFa9Aq7DJjJx3CzAvw/5959/GTC4B6tXbcLjlWeIcrYJE2BXKB/lfqjD+bOX+Prr+IyfPMw0v3HTOnh6vmb71r3Rsm8xheqB8ZSB8dQfG0/npcYztx7kzZ+Lhw8ec/DA0UiXKVbcjvfv3uM6bCIA339fgh9/+o7FC1cC4DzAiUULV/L48d9R24kYTv2BsdQXmE9XMEbSzZs3OXfuHKVKlaJixYocO3aM27dvm+aXLVuWqVODfrPy4bT3798zduxYfvjhB/LmzUvlypVZsWIF4H/rc79+/QDIkSMHx44dY+rUqTRt2hQnJycKFSrEsGHDQtwife3aNdq1a0fRokXJmzcv5cqVY8GCmHMJv23CBKxduZn1a7YGmX792i0AMn+TIdRyGTKmI9u334T442/Lpl1kyZqZb7JkCn2FAYO4Xl7+FfvtWx+srPyrQKrUKbF3aMLI4ZPN3p+YKk/eHIydOITVKzbSqW3vSJeLE9eG156vg0x7+cKdJEkTh1kmcBw9MAOfYBm0dmjCyOGTorT9X4I8eXMyftJQVq3YSHuHXpEqky9/brJkzcSc2UuDTJ89czGFC5QLtQOD/77M8HrzYT2wAiB16pQ4tG3KiICTvNgiT96cjJs0lNUrNtIxCnXgQylSJKO/ixML56/g9MnzYS4X6vEPuBUodeqUtHFoajrJjk3MaYe+zZ4VgF07fgsy3e3gMb5O8HWYt7IEz+DDdihevLj07ucYK69WUT0wnjIwnvpj4+m81Hjm1APw/+LvwoXLUVqXn58f3m/fmn5/6+ODZUA9yJc/N+UqfM+kCbOj9JlfAvUHxlJfYD4NMEbS2rVriR8/PmXKlKFChQpYW1uzcuXKSJdfvnw5O3fuZOLEiezatYumTZsyePBgTp48SdWqVenf3//2LDc3N+zs7AA4ceIEyZMnZ9OmTTRr1izI57158wZ7e3sSJ07MypUr2bp1K5UrV2b06NFcvhy1ht0oHq88ce4zghPHzgSZXqVaeQCuXr4Rarlvs2cB4OaNO0Gm3751D4Bs334TarlbN+/y7NkLGjWtS9KkialeqzLHj5wGoHf/zqxbs4U7AZ8Rmzx48JhidhUY6DyKf8No+EIze8YSfmlYi7LlvieB7dfUrV+dsuW/Z82qTWGWuXXzDs+evaBx07okTZqEGrUqc+zIKQD69O/CujVbTDnGJg8ePKJIgfK49BvJm3/fRKpMvvy5APD28mbFmjk8fHKBm3dP4DrKGRsbmzDLBWbQpFk9kiZLQs3aVTgakEFfZ0fWrN4c6zJ48OARRQuWZ0D/yB//4Pr0d8TX1zfCEzBTHWhWj6RJk1CzVmWOHj1l+oy1sbYORL0devHC/5v49BnSBpme+ZuMAGTKHPqXVK89/+HK5es0bFKHhIlsqdegBscC+oL2nVpy8cJlDh86Ye6uxFiqB8ZTBsZTf2w8nZcaz5x6AJAvXy4SJPianXtX8ejpRS7fOMzAIT356quwb5o8d+YSCRPaUqVaOdKkSUWlyj9x7MhJAIYM682UiXNDvRvhS6f+wFjqC8ynAcZIePf
"text/plain": [
"<Figure size 1500x1500 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"f, ax = plt.subplots(figsize=(15, 15))\n",
"g = sns.heatmap(year_percent_pivot, annot=True, fmt='.1f', linewidths=(.5), ax=ax, cbar=False)\n",
"for t in ax.texts: t.set_text(t.get_text() + \" %\")\n",
"g.set(xlabel=\"\", ylabel=\"\")\n",
"for i in range(year_percent_pivot.shape[1]+1):\n",
" ax.axvline(i, color='white', lw=10)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "e7b754ea",
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": 377,
"id": "48f2898f",
"metadata": {},
"outputs": [],
"source": [
"# Institutional collab"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "3a9538e1",
"metadata": {},
"outputs": [],
"source": [
"wos_univ_locations = wos_univ.merge(wos_country_types, on=\"Country\")\n",
"wos_univ_collabs = wos_univ_locations[wos_univ_locations[\"Country_Type\"]!=\"Other\"][[record_col,\"Country\",\"Institution_harm\",\"Country_Type\",\"Eurovoc_Class\"]].drop_duplicates()\n",
"wos_univ_collabs[\"ISO3\"] = cc.pandas_convert(series=wos_univ_collabs[\"Country\"], to='ISO3')\n",
"wos_univ_collabs[\"Institution_harm_label\"] = wos_univ_collabs[\"Institution_harm\"] + \" (\"+wos_univ_collabs[\"ISO3\"]+ \")\"\n",
"wos_univ_collabs.sample(100)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "6bb0e68d",
"metadata": {},
"outputs": [],
"source": [
"color_discrete_map= {'China': '#EF553B',\n",
" 'EU': '#636EFA',\n",
" 'Non-EU associate': '#00CC96'}"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "df8701eb",
"metadata": {},
"outputs": [],
"source": [
"TOPN = 25\n",
"\n",
"\n",
"wos_univ_ch = wos_univ_collabs[wos_univ_collabs[\"Country_Type\"]==\"China\"]\n",
"wos_univ_eu = wos_univ_collabs[wos_univ_collabs[\"Country_Type\"]!=\"China\"]\n",
"\n",
"wos_univ_eu_strict = wos_univ_collabs[wos_univ_collabs[\"Country_Type\"]==\"EU\"]\n",
"\n",
"data_eu = (wos_univ_eu.groupby([\"Country\",\"Institution_harm_label\",\"Country_Type\"], as_index=False)[record_col].nunique()\n",
" .sort_values(by=record_col,ascending=False).head(TOPN).copy()).sort_values(by=\"Country_Type\")\n",
"\n",
"data_eu_strict = (wos_univ_eu_strict.groupby([\"Country\",\"Institution_harm_label\",\"Eurovoc_Class\"], as_index=False)[record_col].nunique()\n",
" .sort_values(by=record_col,ascending=False).head(TOPN).copy())\n",
"\n",
"data_ch = (wos_univ_ch.groupby([\"Country\",\"Institution_harm\",\"Country_Type\"], as_index=False)[record_col].nunique()\n",
" .sort_values(by=record_col,ascending=False).head(TOPN).copy())\n",
"\n",
"\n",
"for data,c_scope, y_lab, col_by, pat in zip([data_eu,data_eu_strict,data_ch],\n",
" [\"European countries in scope\",\"EU-28 only\",\"China\"],\n",
" [\"Institution_harm_label\",\"Institution_harm_label\",\"Institution_harm\"],\n",
" [\"Country\",\"Eurovoc_Class\",\"Country_Type\"],\n",
" [\"Country_Type\",None,None]):\n",
" fig = px.bar(data, x=record_col, y=y_lab, color=col_by, color_discrete_map=color_discrete_map,pattern_shape=pat,\n",
" labels={\n",
" record_col: 'Number of co-publications',\n",
" \"Institution_harm\": \"Institution\",\n",
" \"Institution_harm_label\": \"Institution\",\n",
" \"Country_Type\":\"Country type\",\n",
" \"Eurovoc_Class\":\"Region\"\n",
" },\n",
" title=f\"Most visible institutions (top {TOPN} within {c_scope})\", template='plotly')\n",
" fig.update_layout(xaxis_tickformat='d',font_family=\"Montserrat\",yaxis={'categoryorder':'total ascending'},\n",
" width=1000, height=1000,)\n",
" fig.update_traces(hovertemplate='%{x:d}')\n",
" fig.add_shape(\n",
" # Rectangle with reference to the plot\n",
" type=\"rect\",\n",
" xref=\"paper\",\n",
" yref=\"paper\",\n",
" x0=0,\n",
" y0=0,\n",
" x1=1.0,\n",
" y1=1.0,\n",
" line=dict(\n",
" color=\"black\",\n",
" width=0.5,\n",
" )\n",
" )\n",
" fig.update_yaxes(\n",
" showgrid=True,\n",
" ticks=\"outside\")\n",
" fig.update_xaxes(\n",
" showgrid=True,\n",
" ticks=\"outside\")\n",
" fig.show(config= dict(displayModeBar = False))"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "fe9560fc",
"metadata": {},
"outputs": [],
"source": [
"wos_univ_test = wos_univ_locations[wos_univ_locations[\"Country_Type\"]!=\"Other\"][[record_col,\"Country\",\"Institution\",\"Institution_harm\",\"Country_Type\"]].drop_duplicates()\n",
"www = wos_univ_test.groupby([\"Institution\",\"Institution_harm\"], as_index=False)[record_col].nunique()\n",
"www[www[\"Institution_harm\"]==\"Chinese Acad Sci\"]"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "31a0769d",
"metadata": {},
"outputs": [],
"source": [
"wos_univ_ch = wos_univ_collabs[wos_univ_collabs[\"Country_Type\"]==\"China\"]\n",
"wos_univ_eu = wos_univ_collabs[wos_univ_collabs[\"Country_Type\"]!=\"China\"]\n",
"\n",
"wos_univ_dipol = wos_univ_eu.merge(wos_univ_ch, on=record_col, suffixes=('_eu', '_ch')).merge(wos[[record_col,\"Domain_English\",\"Field_English\",\"SubField_English\"]], on =record_col)\n",
"wos_univ_dipol.sample(100)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "606e1af0",
"metadata": {},
"outputs": [],
"source": [
"fig = px.parallel_categories(wos_univ_dipol[[\"Country_eu\",\"Domain_English\",\"Country_ch\"]])\n",
"fig.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "ea0951e9",
"metadata": {},
"outputs": [],
"source": [
"data_ch.columns"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "dd4210b3",
"metadata": {},
"outputs": [],
"source": [
"subfilter = ((wos_univ_dipol[\"Institution_harm_label_eu\"].isin(data_eu[\"Institution_harm_label\"]))&\n",
" (wos_univ_dipol[\"Institution_harm_ch\"].isin(data_ch[\"Institution_harm\"])))\n",
"\n",
"fig = px.parallel_categories(wos_univ_dipol[subfilter][[\"Country_eu\",\"Domain_English\",\"Country_ch\"]])\n",
"fig.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "2c5d1d94",
"metadata": {},
"outputs": [],
"source": [
"subfilter = ((wos_univ_dipol[\"Institution_harm_label_eu\"].isin(data_eu[\"Institution_harm_label\"]))&\n",
" (wos_univ_dipol[\"Institution_harm_ch\"].isin(data_ch[\"Institution_harm\"])))\n",
"\n",
"fig = px.parallel_categories(wos_univ_dipol[subfilter][[\"Country_eu\",\"Institution_harm_eu\",\"Domain_English\",\"Institution_harm_ch\"]])\n",
"fig.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "4458c89a",
"metadata": {},
"outputs": [],
"source": [
"sub_df =wos_univ_dipol[subfilter]\n",
"\n",
"inst_co_occur = pd.crosstab(sub_df['Institution_harm_label_eu'], sub_df['Institution_harm_ch'],\n",
" values=sub_df[record_col], aggfunc='nunique').fillna(0).astype(int)\n",
"inst_co_occur\n",
"\n",
"mask = np.triu(np.ones_like(inst_co_occur, dtype=bool))\n",
"data = np.where(mask,inst_co_occur,inst_co_occur)\n",
"\n",
"fig = px.imshow(data,\n",
" labels=dict(x=\"Institute (CH)\", y=\"Institute (EU)\", color=\"Co-publication\"),\n",
" x=list(inst_co_occur.columns),\n",
" y=list(inst_co_occur.index), title=f\"Most visible institutions (top {TOPN} within Europe)\"\n",
" )\n",
"fig.update_layout(title_x=0.5,\n",
" width=1000, height=1000,\n",
" xaxis_showgrid=False,\n",
" yaxis_showgrid=False,\n",
" yaxis_autorange='reversed', template='plotly_white')\n",
"fig.update_xaxes(tickangle= -90)\n",
"fig.update_yaxes(\n",
" ticks=\"outside\")\n",
"fig.update_xaxes(\n",
" ticks=\"outside\")\n",
"fig.show(config= dict(displayModeBar = False))"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "7bd7d149",
"metadata": {},
"outputs": [],
"source": [
"subfilter = ((wos_univ_dipol[\"Institution_harm_label_eu\"].isin(data_eu_strict[\"Institution_harm_label\"]))&\n",
" (wos_univ_dipol[\"Institution_harm_ch\"].isin(data_ch[\"Institution_harm\"])))\n",
"\n",
"fig = px.parallel_categories(wos_univ_dipol[subfilter][[\"Country_eu\",\"Institution_harm_eu\",\"Domain_English\",\"Institution_harm_ch\"]])\n",
"fig.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "e4c59448",
"metadata": {},
"outputs": [],
"source": [
"sub_df =wos_univ_dipol[subfilter]\n",
"\n",
"inst_co_occur = pd.crosstab(sub_df['Institution_harm_label_eu'], sub_df['Institution_harm_ch'],\n",
" values=sub_df[record_col], aggfunc='nunique').fillna(0).astype(int)\n",
"inst_co_occur\n",
"\n",
"mask = np.triu(np.ones_like(inst_co_occur, dtype=bool))\n",
"data = np.where(mask,inst_co_occur,inst_co_occur)\n",
"\n",
"fig = px.imshow(data,\n",
" labels=dict(x=\"Institute (CH)\", y=\"Institute (EU)\", color=\"Co-publication\"),\n",
" x=list(inst_co_occur.columns),\n",
" y=list(inst_co_occur.index), title=f\"Most visible institutions (top {TOPN} within Europe)\",\n",
" )\n",
"fig.update_layout(title_x=0.5,\n",
" width=1000, height=1000,\n",
" xaxis_showgrid=False,\n",
" yaxis_showgrid=False,\n",
" yaxis_autorange='reversed',\n",
" template='plotly_white',\n",
" coloraxis_colorbar=dict(\n",
" thicknessmode=\"pixels\", thickness=25,\n",
" ticks=\"outside\", ticksuffix=\" \",\n",
" dtick=20,outlinewidth=1,\n",
" ))\n",
"fig.update_xaxes(tickangle= -45)\n",
"fig.update_yaxes(\n",
" ticks=\"outside\")\n",
"fig.update_xaxes(\n",
" ticks=\"outside\")\n",
"\n",
"fig.show(config= dict(displayModeBar = False))"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "f4fc134d",
"metadata": {},
"outputs": [],
"source": [
"import dash_bio\n",
"\n",
"list(range(data.min(),data.max()+21,20))"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "e8c51a09",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.16"
}
},
"nbformat": 4,
"nbformat_minor": 5
}