You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
ZSI_Reconnect_China/PATSTAT/patstat_analyses.ipynb

122 lines
3.5 MiB
Plaintext

2 years ago
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"collapsed": true
},
"outputs": [
{
"data": {
"text/html": " <script type=\"text/javascript\">\n window.PlotlyConfig = {MathJaxConfig: 'local'};\n if (window.MathJax && window.MathJax.Hub && window.MathJax.Hub.Config) {window.MathJax.Hub.Config({SVG: {font: \"STIX-Web\"}});}\n if (typeof require !== 'undefined') {\n require.undef(\"plotly\");\n define('plotly', function(require, exports, module) {\n /**\n* plotly.js v2.20.0\n* Copyright 2012-2023, Plotly, Inc.\n* All rights reserved.\n* Licensed under the MIT license\n*/\n/*! For license information please see plotly.min.js.LICENSE.txt */\n!function(t,e){\"object\"==typeof exports&&\"object\"==typeof module?module.exports=e():\"function\"==typeof define&&define.amd?define([],e):\"object\"==typeof exports?exports.Plotly=e():t.Plotly=e()}(self,(function(){return function(){var t={98847:function(t,e,r){\"use strict\";var n=r(71828),i={\"X,X div\":'direction:ltr;font-family:\"Open Sans\",verdana,arial,sans-serif;margin:0;padding:0;',\"X input,X button\":'font-family:\"Open Sans\",verdana,arial,sans-serif;',\"X input:focus,X button:focus\":\"outline:none;\",\"X a\":\"text-decoration:none;\",\"X a:hover\":\"text-decoration:none;\",\"X .crisp\":\"shape-rendering:crispEdges;\",\"X .user-select-none\":\"-webkit-user-select:none;-moz-user-select:none;-ms-user-select:none;-o-user-select:none;user-select:none;\",\"X svg\":\"overflow:hidden;\",\"X svg a\":\"fill:#447adb;\",\"X svg a:hover\":\"fill:#3c6dc5;\",\"X .main-svg\":\"position:absolute;top:0;left:0;pointer-events:none;\",\"X .main-svg .draglayer\":\"pointer-events:all;\",\"X .cursor-default\":\"cursor:default;\",\"X .cursor-pointer\":\"cursor:pointer;\",\"X .cursor-crosshair\":\"cursor:crosshair;\",\"X .cursor-move\":\"cursor:move;\",\"X .cursor-col-resize\":\"cursor:col-resize;\",\"X .cursor-row-resize\":\"cursor:row-resize;\",\"X .cursor-ns-resize\":\"cursor:ns-resize;\",\"X .cursor-ew-resize\":\"cursor:ew-resize;\",\"X .cursor-sw-resize\":\"cursor:sw-resize;\",\"X .cursor-s-resize\":\"cursor:s-resize;\",\"X .cursor-se-resize\":\"cursor:se-resize;\",\"X .cursor-w-resize\":\"cursor:w-resize;\",\"X .cursor-e-resize\":\"cursor:e-resize;\",\"X .cursor-nw-resize\":\"cursor:nw-resize;\",\"X .cursor-n-resize\":\"cursor:n-resize;\",\"X .cursor-ne-resize\":\"cursor:ne-resize;\",\"X .cursor-grab\":\"cursor:-webkit-grab;cursor:grab;\",\"X .modebar\":\"position:absolute;top:2px;right:2px;\",\"X .ease-bg\":\"-webkit-transition:background-color .3s ease 0s;-moz-transition:background-color .3s ease 0s;-ms-transition:background-color .3s ease 0s;-o-transition:background-color .3s ease 0s;transition:background-color .3s ease 0s;\",\"X .modebar--hover>:not(.watermark)\":\"opacity:0;-webkit-transition:opacity .3s ease 0s;-moz-transition:opacity .3s ease 0s;-ms-transition:opacity .3s ease 0s;-o-transition:opacity .3s ease 0s;transition:opacity .3s ease 0s;\",\"X:hover .modebar--hover .modebar-group\":\"opacity:1;\",\"X .modebar-group\":\"float:left;display:inline-block;box-sizing:border-box;padding-left:8px;position:relative;vertical-align:middle;white-space:nowrap;\",\"X .modebar-btn\":\"position:relative;font-size:16px;padding:3px 4px;height:22px;cursor:pointer;line-height:normal;box-sizing:border-box;\",\"X .modebar-btn svg\":\"position:relative;top:2px;\",\"X .modebar.vertical\":\"display:flex;flex-direction:column;flex-wrap:wrap;align-content:flex-end;max-height:100%;\",\"X .modebar.vertical svg\":\"top:-1px;\",\"X .modebar.vertical .modebar-group\":\"display:block;float:none;padding-left:0px;padding-bottom:8px;\",\"X .modebar.vertical .modebar-group .modebar-btn\":\"display:block;text-align:center;\",\"X [data-title]:before,X [data-title]:after\":\"position:absolute;-webkit-transform:translate3d(0, 0, 0);-moz-transform:translate3d(0, 0, 0);-ms-transform:translate3d(0, 0, 0);-o-transform:translate3d(0, 0, 0);transform:translate3d(0, 0, 0);display:none;opacity:0;z-index:1001;pointer-events:none;top:110%;right:50%;\",\"X [data-title]:hover:before,X [data-title]:hover:after\":\"display:block;opacity:1;\",\"X [data-title]:before
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"import os\n",
"import numpy as np\n",
"import pandas as pd\n",
"import janitor\n",
"import matplotlib.pyplot as plt\n",
"import seaborn as sns\n",
"from matplotlib.ticker import MaxNLocator\n",
"import math\n",
"import plotly.express as px\n",
"import plotly.graph_objects as go\n",
"import plotly.offline as pyo\n",
"from plotly.subplots import make_subplots\n",
"import plotly.graph_objects as go\n",
"pyo.init_notebook_mode()\n",
"\n",
"import plotly.io as pio\n",
"pio.renderers.default = \"plotly_mimetype+notebook\"\n",
"\n",
"import country_converter as coco\n",
"cc = coco.CountryConverter()\n",
"\n",
"\n",
"%matplotlib inline"
]
},
{
"cell_type": "code",
"execution_count": 2,
"outputs": [],
"source": [
"os.makedirs('plot_html/PPT_plots',exist_ok=True)"
],
"metadata": {
"collapsed": false
}
},
{
"cell_type": "code",
"execution_count": 3,
"outputs": [],
"source": [
"agg_ds = 'aggregated_data'"
],
"metadata": {
"collapsed": false
}
},
{
"cell_type": "code",
"execution_count": 6,
"outputs": [],
"source": [
"cn = pd.read_csv(f\"{agg_ds}/01_counts_cty_yr_CN.csv\", header=None)\n",
"eur = pd.read_csv(f\"{agg_ds}/01_counts_cty_yr_eu_27_GB.csv\", header=None)"
],
"metadata": {
"collapsed": false
}
},
{
"cell_type": "code",
"execution_count": 7,
"outputs": [
{
"data": {
"text/plain": " 0 1 2\n0 2011 AT 2395\n1 2011 BE 646\n2 2011 BG 330\n3 2011 CY 1256\n4 2011 CZ 2246\n.. ... .. ...\n7 2018 CN 3242424\n8 2019 CN 3547407\n9 2020 CN 4367505\n10 2021 CN 4012952\n11 2022 CN 2613602\n\n[359 rows x 3 columns]",
"text/html": "<div>\n<style scoped>\n .dataframe tbody tr th:only-of-type {\n vertical-align: middle;\n }\n\n .dataframe tbody tr th {\n vertical-align: top;\n }\n\n .dataframe thead th {\n text-align: right;\n }\n</style>\n<table border=\"1\" class=\"dataframe\">\n <thead>\n <tr style=\"text-align: right;\">\n <th></th>\n <th>0</th>\n <th>1</th>\n <th>2</th>\n </tr>\n </thead>\n <tbody>\n <tr>\n <th>0</th>\n <td>2011</td>\n <td>AT</td>\n <td>2395</td>\n </tr>\n <tr>\n <th>1</th>\n <td>2011</td>\n <td>BE</td>\n <td>646</td>\n </tr>\n <tr>\n <th>2</th>\n <td>2011</td>\n <td>BG</td>\n <td>330</td>\n </tr>\n <tr>\n <th>3</th>\n <td>2011</td>\n <td>CY</td>\n <td>1256</td>\n </tr>\n <tr>\n <th>4</th>\n <td>2011</td>\n <td>CZ</td>\n <td>2246</td>\n </tr>\n <tr>\n <th>...</th>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n </tr>\n <tr>\n <th>7</th>\n <td>2018</td>\n <td>CN</td>\n <td>3242424</td>\n </tr>\n <tr>\n <th>8</th>\n <td>2019</td>\n <td>CN</td>\n <td>3547407</td>\n </tr>\n <tr>\n <th>9</th>\n <td>2020</td>\n <td>CN</td>\n <td>4367505</td>\n </tr>\n <tr>\n <th>10</th>\n <td>2021</td>\n <td>CN</td>\n <td>4012952</td>\n </tr>\n <tr>\n <th>11</th>\n <td>2022</td>\n <td>CN</td>\n <td>2613602</td>\n </tr>\n </tbody>\n</table>\n<p>359 rows × 3 columns</p>\n</div>"
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"pd.concat([eur,cn])"
],
"metadata": {
"collapsed": false
}
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 2
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython2",
"version": "2.7.6"
}
},
"nbformat": 4,
"nbformat_minor": 0
}